A plasmonic meta-rotary travelling-wave oscillator with ultrahigh phase accuracy and figure of merit

IF 23.4 Q1 OPTICS
Da Yue Yao, Hao Chi Zhang, Pei Hang He, Jia Jie Shen, Jia Wen Zhu, Peigen Zhou, Xin Yu Zhang, Le Peng Zhang, Li Jie Wu, Cun Yue Wei, Rui Wen Shao, Yi Fan, Yang Zhao, Jixin Chen, Wei Hong, Tie Jun Cui
{"title":"A plasmonic meta-rotary travelling-wave oscillator with ultrahigh phase accuracy and figure of merit","authors":"Da Yue Yao, Hao Chi Zhang, Pei Hang He, Jia Jie Shen, Jia Wen Zhu, Peigen Zhou, Xin Yu Zhang, Le Peng Zhang, Li Jie Wu, Cun Yue Wei, Rui Wen Shao, Yi Fan, Yang Zhao, Jixin Chen, Wei Hong, Tie Jun Cui","doi":"10.1038/s41377-025-01966-z","DOIUrl":null,"url":null,"abstract":"<p>High phase accuracy and figure of merit (FOM) of quadrature signals are essential for integrated systems, including quadrature amplitude modulation (QAM) communications and multi-input multi-output (MIMO) radar. However, the traditional quadrature oscillators often struggle to meet the stringent requirements of high FOM and high quadrature phase accuracy simultaneously. To address this challenge, we propose a spoof surface plasmon polariton (SPP) metawaveguide (Meta) to design on-chip rotary traveling-wave oscillator (RTWO). By leveraging the advanced dispersion manipulation capability of Meta, the physical and electrical lengths of transmission line (TL) are effectively decoupled, thereby overcoming the limitations associated with the unequal electrical lengths of inner and outer loops of the resonator, which is difficult to achieve in the conventional RTWOs. Based on the design methodology, we realize a Meta-RTWO using the 65 nm CMOS technology and achieve a measured FOM of 188.5 dBc/Hz and a phase error of approximately 0.21°. These metrics surpass those of the traditional oscillators fabricated even by more advanced 28 nm CMOS processes. This study demonstrates that Meta-RTWO achieves a significant improvement in both output signal quadrature accuracy and FOM under process limitations without using additional phase adjustment structures.</p><figure></figure>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"42 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01966-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

High phase accuracy and figure of merit (FOM) of quadrature signals are essential for integrated systems, including quadrature amplitude modulation (QAM) communications and multi-input multi-output (MIMO) radar. However, the traditional quadrature oscillators often struggle to meet the stringent requirements of high FOM and high quadrature phase accuracy simultaneously. To address this challenge, we propose a spoof surface plasmon polariton (SPP) metawaveguide (Meta) to design on-chip rotary traveling-wave oscillator (RTWO). By leveraging the advanced dispersion manipulation capability of Meta, the physical and electrical lengths of transmission line (TL) are effectively decoupled, thereby overcoming the limitations associated with the unequal electrical lengths of inner and outer loops of the resonator, which is difficult to achieve in the conventional RTWOs. Based on the design methodology, we realize a Meta-RTWO using the 65 nm CMOS technology and achieve a measured FOM of 188.5 dBc/Hz and a phase error of approximately 0.21°. These metrics surpass those of the traditional oscillators fabricated even by more advanced 28 nm CMOS processes. This study demonstrates that Meta-RTWO achieves a significant improvement in both output signal quadrature accuracy and FOM under process limitations without using additional phase adjustment structures.

Abstract Image

一种具有超高相位精度和品质图的等离子体元旋转行波振荡器
正交信号的高相位精度和优值图(FOM)是集成系统的必要条件,包括正交调幅(QAM)通信和多输入多输出(MIMO)雷达。然而,传统的正交振荡器往往难以同时满足高FOM和高正交相位精度的严格要求。为了解决这一挑战,我们提出了一种欺骗表面等离子激元波导(Meta)来设计片上旋转行波振荡器(RTWO)。通过利用Meta先进的色散操纵能力,传输线(TL)的物理和电气长度被有效地解耦,从而克服了谐振器内外环电长度不相等的限制,这在传统的rtwo中很难实现。基于设计方法,我们采用65 nm CMOS技术实现了Meta-RTWO,测量FOM为188.5 dBc/Hz,相位误差约为0.21°。这些指标超过了传统的振荡器,甚至是由更先进的28纳米CMOS工艺制造的。本研究表明,在工艺限制下,Meta-RTWO在不使用额外相位调整结构的情况下,显著提高了输出信号正交精度和FOM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信