{"title":"Characteristics, implementation, and applications of special perfect entanglers","authors":"Karthick Selvan, S. Balakrishnan","doi":"10.1140/epjd/s10053-024-00925-4","DOIUrl":"10.1140/epjd/s10053-024-00925-4","url":null,"abstract":"<p>In this paper, we discuss the characteristics of special perfect entanglers from a new perspective, present the results obtained from the implementation of special perfect entangler circuits using cross-resonance interaction, and discuss their applications. First, we show that the entangling power of a two-qubit gate is proportional to the mean squared length of the chords present in the argand diagram of squared eigenvalues of the nonlocal part of the gate, and derive the entangling characteristics of special perfect entanglers from the argand diagram associated with them. Next, we discuss the implementation of a single-parameter special perfect entangler circuit in an IBM quantum processor. We implement the circuit for nine different parameters using two methods. In the first method, we use two echoed cross-resonance gates for implementation, and in the second method, we use pulse-level programming to define the pulse sequence of part of the circuits. For a particular input state, we perform quantum state tomography, calculate state fidelity and concurrence of the output density matrices, and compare the results obtained in both methods of implementation. We also measure the average gate fidelity for the B gate circuit. We construct a universal two-qubit quantum circuit using the special perfect entangler circuit. This universal circuit can be used to generate all two-qubit gates in IBM quantum processors. We also show that <span>((n-1))</span> B gate circuits can be used to generate <i>n</i>-qubit GHZ and perfect W states. We generate three-qubit perfect W state in IBM quantum processor. Perfect W state generated using pulse-level programming shows better fidelity than the state generated using four echoed cross-resonance gates.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 11","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesco Michele Ventrella, Guido Boffetta, Massimo Cencini, Filippo De Lillo
{"title":"Modeling straight and circle swimmers: from single swimmer to collective motion","authors":"Francesco Michele Ventrella, Guido Boffetta, Massimo Cencini, Filippo De Lillo","doi":"10.1140/epje/s10189-024-00458-z","DOIUrl":"10.1140/epje/s10189-024-00458-z","url":null,"abstract":"<p>We propose a simple numerical model for the motion of microswimmers based on the immersed boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces corresponding to the body and the flagellum. We study in particular the minimal model consisting of only three beads (two for the body and one for the flagellum) connected by rigid, inextensible links. When the beads are collinear, standard straight swimming is realized and, in the absence of propulsion, we demonstrate that the model recovers Jeffery’s equation for a thin rod. Conversely, by imposing an angle between body and flagellum the swimmer moves on circular orbits. We discuss how two swimmers, in collinear or non-collinear geometry, scatter upon encounter. Finally, we explore the dynamics of a large number of swimmers reacting to one another only via hydrodynamic interactions, and exemplify their complex collective dynamics in both straight and circular swimmers.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 11","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ernesto F. Eiroa, Griselda Figueroa-Aguirre, Miguel L. Peñafiel, Santiago Esteban Perez Bergliaffa
{"title":"Dynamical and thermodynamical stability of a charged thin-shell wormhole","authors":"Ernesto F. Eiroa, Griselda Figueroa-Aguirre, Miguel L. Peñafiel, Santiago Esteban Perez Bergliaffa","doi":"10.1140/epjc/s10052-024-13465-3","DOIUrl":"10.1140/epjc/s10052-024-13465-3","url":null,"abstract":"<div><p>A study of the dynamical and thermodynamical stability of a charged thin-shell wormhole built by gluing two Reissner–Nordström geometries is presented. The charge on the shell is linearly related to the matter content. For the dynamical stability, a concise inequality is obtained, valid for any barotropic equation of state that relates the pressure with the energy density at the throat. A thermodynamical description of the system is introduced, which leads to the temperature and the electric potentials. Adopting a linear equation of state for the pressure and a definite form for the entropy function, the set of equilibrium configurations that are both dynamically and thermodynamically stable is found.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 11","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13465-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied Physics APub Date : 2024-11-18DOI: 10.1007/s00339-024-08040-2
Piotr Ryś, Jacek Kowalczyk, Maja Mroczkowska-Szerszeń, Marcin Kaczkan, Karolina Majewska, Piotr Moszczyński, Wojciech Pudełko, Maciej Siekierski
{"title":"Dispersion phenomena in EIS and DIS spectra of porous materials and their representation as transmission line bases ‘diffusion’ elements– part II - a case study of proton conductors","authors":"Piotr Ryś, Jacek Kowalczyk, Maja Mroczkowska-Szerszeń, Marcin Kaczkan, Karolina Majewska, Piotr Moszczyński, Wojciech Pudełko, Maciej Siekierski","doi":"10.1007/s00339-024-08040-2","DOIUrl":"10.1007/s00339-024-08040-2","url":null,"abstract":"<div><p>Porosity of materials, understood as an overall averaged parameter or as the pore-size distribution related data is an important quality of numerous functional materials including proton conductive glasses. While most of the existing techniques applied for its assessment cannot be used to monitor the behaviour of ‘live’ systems in operando conditions, it is possible to use Electrochemical Immittance Spectroscopy (EIS) for this purpose. Nevertheless, analysis of these systems still requires an approximation made using transmission lines based models, which can be equated to specific diffusion elements parameters, which can in turn be related to qualities of the porous material investigated. The changes of these parameters can be correlated with various processes– such as dehydration and phase transitions or to the material’s processing history. In this part of the material we present a case study of highly grinded, mechanochemically processed powder-pressed proton conductors: phosphate-silicate glass and two uranyl based compounds– hydroxy phosphate (HUP) and hydroxy arsenate, delivering proof that the dispersive properties of proton transporting materials can be correlated with their dehydration processes, which were followed by means of FT-IR and terahertz time domain spectroscopies. </p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"130 12","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00339-024-08040-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Otto M. Pires, Mauro Q. Nooblath, Yan Alef C. Silva, Maria Heloísa F. da Silva, Lucas Q. Galvão, Anton S. Albino
{"title":"Synthetic data generation with hybrid quantum-classical models for the financial sector","authors":"Otto M. Pires, Mauro Q. Nooblath, Yan Alef C. Silva, Maria Heloísa F. da Silva, Lucas Q. Galvão, Anton S. Albino","doi":"10.1140/epjb/s10051-024-00786-1","DOIUrl":"10.1140/epjb/s10051-024-00786-1","url":null,"abstract":"<p>Data integrity and privacy are critical concerns in the financial sector. Traditional methods of data collection face challenges due to privacy regulations and time-consuming anonymization processes. In collaboration with Banco BV, we trained a hybrid quantum-classical generative adversarial network (HQGAN), where a quantum circuit serves as the generator and a classical neural network acts as the discriminator, to generate synthetic financial data efficiently and securely. We compared our proposed HQGAN model with a fully classical GAN by evaluating loss convergence and the MSE distance between the synthetic and real data. Although initially promising, our evaluation revealed that HQGAN failed to achieve the necessary accuracy to understand the intricate patterns in financial data. This outcome underscores the current limitations of quantum-inspired methods in handling the complexities of financial datasets.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 11","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjb/s10051-024-00786-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui-Bo Wang, Shi-Jie Ma, Lei You, Yu-Cheng Tang, Yu-Hang Feng, Xian-Ru Hu, Jian-Bo Deng
{"title":"Thermodynamics of AdS-Schwarzschild-like black hole in loop quantum gravity","authors":"Rui-Bo Wang, Shi-Jie Ma, Lei You, Yu-Cheng Tang, Yu-Hang Feng, Xian-Ru Hu, Jian-Bo Deng","doi":"10.1140/epjc/s10052-024-13505-y","DOIUrl":"10.1140/epjc/s10052-024-13505-y","url":null,"abstract":"<div><p>We obtained the metric of the Schwarzschild-like black hole with loop quantum gravity (LQG) corrections in anti-de Sitter (AdS) space-time, under the assumption that the cosmological constant is decoupled in LQG. We investigated its thermodynamics, including the equation of state, criticality, heat capacity, and Gibbs free energy. The <span>(P-v)</span> graph was plotted, and the critical behavior was calculated. It was found that, due to the LQG effect, the quantum-corrected Schwarzschild-AdS black hole exhibits a critical point and a critical ratio of 7/18, which differs from the Reissner–Nordstr<span>(ddot{textrm{o}})</span>m-AdS black hole’s ratio of 3/8 (the same as that of the Van der Waals system) slightly. However, there are still some similarities compared to the Van der Waals system, such as the same critical exponents and a similar <span>(P-v)</span> graph. Moreover, it is concluded that the energy-momentum tensor related to the black hole’s mass could violate the conventional first law of thermodynamics. This modified first law may violate the conservation of Gibbs free energy during the small black hole-large black hole phase transitions, potentially indicating the occurrence of the zeroth-order phase transition. The Joule–Thomson expansion was also studied. Interestingly, compared to the Schwarzschild-AdS black hole, the LQG effect leads to inversion points. The inversion curve divides the <span>(left( P,Tright) )</span> coordinate system into two regions: a heating region and a cooling region, as shown in detail by the inversion curves and isenthalpic curves. The results indicated that there is a minimum inversion mass, below which any black hole will not possess an inversion point.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 11","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13505-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied Physics APub Date : 2024-11-18DOI: 10.1007/s00339-024-08035-z
Arebat Ryad Alhadei Mohamed, Mohd Mustafa Awang Kechik, Chen Soo Kien, Lim Kean Pah, Hussien Baqiah, Khairul Khaizi Mohd Shariff, Yap Siew Hong, Hoo Keong Peh, Abdul Halim Shaari, Syahrul Humaidi, Muralidhar Miryala
{"title":"Enhancing superconducting properties of YBa2Cu3O7- ẟ through Nd2O3 addition prepared using modified thermal decomposition method","authors":"Arebat Ryad Alhadei Mohamed, Mohd Mustafa Awang Kechik, Chen Soo Kien, Lim Kean Pah, Hussien Baqiah, Khairul Khaizi Mohd Shariff, Yap Siew Hong, Hoo Keong Peh, Abdul Halim Shaari, Syahrul Humaidi, Muralidhar Miryala","doi":"10.1007/s00339-024-08035-z","DOIUrl":"10.1007/s00339-024-08035-z","url":null,"abstract":"<div><p>Polycrystalline YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub> (Y-123) samples with different varying weight percentages (x = 0.0, 0.1, 0.3, 0.5, 1.0, and 5.0 wt.%) of neodymium oxide (Nd<sub>2</sub>O<sub>3</sub>) addition have been successfully synthesized using a modified thermal decomposition method (DM) under ambient conditions. X-ray diffraction (XRD) analysis revealed favorable orthorhombicity values (~ 0.008) for the Y-123 crystal structure, and an estimated oxygen content close to the theoretical value (~ 6.8), along with the presence of light secondary phases such as Y<sub>2</sub>BaCuO<sub>5</sub> (Y-211) and BaCuO<sub>2</sub>. For FESEM analysis, it was found that 5.0 wt.% Nd<sub>2</sub>O<sub>3</sub> increased porosity and reduced grain size, negatively impacting superconductivity. Conversely, 0.5 wt.% Nd<sub>2</sub>O<sub>3</sub> promoted significant grain growth, leading to enhanced grain contact and a denser microstructure. Electrical resistivity measurements confirmed superconducting transitions in all samples. Notably, the 0.5 wt.% Nd<sub>2</sub>O<sub>3</sub> sample exhibited an optimal <i>T</i><sub><i>c-onset</i></sub> of 94.14 K with a narrow transition width Δ<i>T</i><sub><i>c</i></sub> of 4.04 K. In contrast, the higher 5.0 wt.% Nd<sub>2</sub>O<sub>3</sub> concentration resulted in a broader Δ<i>T</i><sub><i>c</i></sub> of 7.47 K, suggesting the lower doping provided more optimal superconducting performance. AC susceptibility measurements corroborated these findings. This DM method offers a cost-effective approach for Y-123 synthesis, with potential for further optimization through alkali metal doping to reduce costs and environmental impact.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"130 12","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied Physics APub Date : 2024-11-18DOI: 10.1007/s00339-024-08080-8
N. Yusop, S. N. Waheeda, E. A. Alias, M. E. A. Samsudin, M. Ikram Md Taib, N. Zainal
{"title":"Ge-doping in polycrystalline GaN layer through electron beam evaporator deposition with successive ammonia annealing","authors":"N. Yusop, S. N. Waheeda, E. A. Alias, M. E. A. Samsudin, M. Ikram Md Taib, N. Zainal","doi":"10.1007/s00339-024-08080-8","DOIUrl":"10.1007/s00339-024-08080-8","url":null,"abstract":"<div><p>We studied the impact of Ge-doping on material properties of polycrystalline GaN layers with different Ge percentages of 2%, 5% and 10%. The carrier concentration for the undoped polycrystalline GaN layer is ~ 6 × 10<sup>19</sup> cm<sup>− 3</sup>, and the value increases up to ~ 1.1 × 10<sup>21</sup> cm<sup>− 3</sup> by the Ge-doping with 5% of Ge. Meanwhile, the electron mobility is the lowest at 98.6 cm<sup>2</sup>/Vs with 5% of Ge. The result is comparable to some reported Ge-doped single crystal GaN layers with the carrier concentration of above 10<sup>20</sup> cm<sup>− 3</sup>. Additionally, the surface of the polycrystalline GaN layer changes significantly with the Ge percentage above 5%. In particular, GaN grain protrusions and GaN grain-like rods are observed. It is found that Ge-N related compounds can form on the GaN grain-like rods. The grain protrusions and grain-like rods lead to the broadening of the Raman E<sub>2</sub> peak, indicating that the crystalline properties can be degraded by excessive Ge-doping.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"130 12","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel Casimir wormholes in Einstein gravity","authors":"Mohammad Reza Mehdizadeh, Amir Hadi Ziaie","doi":"10.1140/epjp/s13360-024-05801-z","DOIUrl":"10.1140/epjp/s13360-024-05801-z","url":null,"abstract":"<div><p>In the context of General Relativity (GR), violation of the null energy condition (NEC) is necessary for existence of static spherically symmetric wormhole solutions. Also, it is a well-known fact that the energy conditions are violated by certain quantum fields, such as the Casimir effect. The magnitude and sign of the Casimir energy depend on Dirichlet or Neumann boundary conditions and geometrical configuration of the objects involved in a Casimir setup. The Casimir energy may act as an ideal candidate for the matter that supports the wormhole geometry. In the present work, we firstly find traversable wormhole solutions supported by a general form for the Casimir energy density assuming a constant redshift function. As well, in this framework, assuming that the radial pressure and energy density obey a linear equation of state, we derive for the first time Casimir traversable wormhole solutions admitting suitable shape function. Then, we consider three geometric configurations of the Casimir effect such as (i) two parallel plates, (ii) two parallel cylindrical shells, and (iii) two spheres. We study wormhole solutions for each case and their property in detail. We also check the weak and strong energy conditions in the spacetime for the obtained wormhole solutions. The stability of the Casimir traversable wormhole solutions are investigated using the Tolman-Oppenheimer-Volkoff (TOV) equation. Finally, we study trajectory of null as well as timelike particles along with quasi-normal modes (QNMs) of a scalar field in the wormhole spacetime.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 11","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}