物理最新文献

筛选
英文 中文
Undecidability in physics: A review 物理学中的不可判定性:综述
IF 23.9 1区 物理与天体物理
Physics Reports Pub Date : 2025-07-11 DOI: 10.1016/j.physrep.2025.06.004
Álvaro Perales-Eceiza , Toby Cubitt , Mile Gu , David Pérez-García , Michael M. Wolf
{"title":"Undecidability in physics: A review","authors":"Álvaro Perales-Eceiza ,&nbsp;Toby Cubitt ,&nbsp;Mile Gu ,&nbsp;David Pérez-García ,&nbsp;Michael M. Wolf","doi":"10.1016/j.physrep.2025.06.004","DOIUrl":"10.1016/j.physrep.2025.06.004","url":null,"abstract":"<div><div>The study of undecidability in problems arising from physics has experienced a renewed interest, mainly in connection with quantum information problems. The goal of this review is to survey this recent development. After a historical introduction, we first explain the necessary results about undecidability in mathematics and computer science. Then we briefly review the first results about undecidability in physics which emerged mostly in the 80s and early 90s. Finally, we focus on the most recent contributions, which we divide in two main categories: many body systems and quantum information problems.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1138 ","pages":"Pages 1-29"},"PeriodicalIF":23.9,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144605419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic dynamics in determining fertilization outcomes in plants: effect of gamete number and pollen tube travel path length. 决定植物受精结果的随机动力学:配子数量和花粉管传播路径长度的影响。
IF 2.2 4区 物理与天体物理
The European Physical Journal E Pub Date : 2025-07-08 DOI: 10.1140/epje/s10189-025-00501-7
Aneesa Manzoor, Mahima, Pushkin Kachroo, R Uma Shaanker, Ajeet K Sharma
{"title":"Stochastic dynamics in determining fertilization outcomes in plants: effect of gamete number and pollen tube travel path length.","authors":"Aneesa Manzoor, Mahima, Pushkin Kachroo, R Uma Shaanker, Ajeet K Sharma","doi":"10.1140/epje/s10189-025-00501-7","DOIUrl":"10.1140/epje/s10189-025-00501-7","url":null,"abstract":"<p><p>Plants may enhance seed fitness by favoring fertilization by pollen grains with superior genetic qualities. Pistil traits, such as style length and stigmatic area, are thought to influence this selection, but the mechanisms remain unclear. The impact of stochastic factors on pollen germination time variations is also not fully understood. To investigate this, we simulated a biophysical model using the Monte Carlo method to study how gamete number and pollen tube travel path length affect pollen selection. Our results show that longer travel paths (style lengths) and greater pollen loads on the stigma increase the probability of genetically superior pollen fertilizing ovules. It is because longer styles and more pollen load suppress stochastic effects, promoting seed fitness by favoring superior pollen. We also identify a tradeoff between the benefits of increased path length or pollen load and the resource costs incurred.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 6-7","pages":"37"},"PeriodicalIF":2.2,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144590132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A python-based novel vertex-edge-weighted modeling framework for enhanced QSPR analysis of cardiovascular and diabetes drug molecules. 一种基于python的顶点边缘加权模型框架,用于心血管和糖尿病药物分子的增强QSPR分析。
IF 2.2 4区 物理与天体物理
The European Physical Journal E Pub Date : 2025-07-08 DOI: 10.1140/epje/s10189-025-00500-8
Sezer Sorgun, Asad Ullah
{"title":"A python-based novel vertex-edge-weighted modeling framework for enhanced QSPR analysis of cardiovascular and diabetes drug molecules.","authors":"Sezer Sorgun, Asad Ullah","doi":"10.1140/epje/s10189-025-00500-8","DOIUrl":"10.1140/epje/s10189-025-00500-8","url":null,"abstract":"<p><p>This study advances the quantitative structure-property relationship analysis by leveraging novel vertex-edge-weighted (VEW) molecular graphs to investigate 19 drug molecules commonly used to treat cardiovascular diseases and diabetes. The graphs are constructed by assigning weights to vertices and edges based on atomic properties, enabling a detailed and chemically meaningful representation of molecular structures. Python-based programs were developed to compute degree-based topological indices, which were then analyzed through robust linear regression models to uncover correlations with key physicochemical properties. The results reveal strong and consistent relationships between the computed indices and the physicochemical properties, validating the predictive capability of the proposed approach. Notably, the VEW model demonstrates significant improvements in accuracy and correlation strength over traditional unweighted molecular graph models, underscoring its enhanced ability to capture intricate molecular interactions. This work provides novel insights into the utility of degree-based topological indices in drug design, particularly for cardiovascular and diabetic treatments. By bridging theoretical modeling with practical pharmaceutical applications, it lays a solid foundation for optimizing molecular properties, improving drug efficacy, and accelerating the drug development pipeline. These findings reaffirm the growing significance of computational strategies in advancing precision medicine and pharmaceutical innovation.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 6-7","pages":"36"},"PeriodicalIF":2.2,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144582785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Persistent currents in ultracold gases 超冷气体中的持续电流
IF 23.9 1区 物理与天体物理
Physics Reports Pub Date : 2025-07-08 DOI: 10.1016/j.physrep.2025.06.003
J. Polo , W.J. Chetcuti , T. Haug , A. Minguzzi , K. Wright , L. Amico
{"title":"Persistent currents in ultracold gases","authors":"J. Polo ,&nbsp;W.J. Chetcuti ,&nbsp;T. Haug ,&nbsp;A. Minguzzi ,&nbsp;K. Wright ,&nbsp;L. Amico","doi":"10.1016/j.physrep.2025.06.003","DOIUrl":"10.1016/j.physrep.2025.06.003","url":null,"abstract":"<div><div>Persistent currents flowing in spatially closed tracks define one of the most iconic concepts in mesoscopic physics. They have been studied in solid-state platforms such as superfluids, superconductors and metals. Cold atoms trapped in magneto-optical toroidal circuits and driven by suitable artificial gauge fields allow us to study persistent currents with unprecedented control and flexibility of the system’s physical conditions. Here, we review persistent currents of ultracold matter. Capitalizing on the remarkable progress in driving different atomic species to quantum degeneracy, persistent currents of single or multicomponent bosons/fermions, and their mixtures can be addressed within the present experimental know-how. This way, fundamental concepts of quantum science and many-body physics, like macroscopic quantum coherence, solitons, vortex dynamics, fermionic pairing and BEC-BCS crossover can be studied from a novel perspective. Finally, we discuss how persistent currents can form the basis of new technological applications like matter-wave gyroscopes and interferometers.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1137 ","pages":"Pages 1-70"},"PeriodicalIF":23.9,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144579642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Droplet-on-demand using a positive pressure pulse. 使用正压脉冲按需滴注。
IF 2.2 4区 物理与天体物理
The European Physical Journal E Pub Date : 2025-07-02 DOI: 10.1140/epje/s10189-025-00493-4
Mathieu Oléron, Grégoire Clement, Samuel Hidalgo-Caballero, Masoodah Gunny, Finn Box, Matthieu Labousse, Joshua D McGraw
{"title":"Droplet-on-demand using a positive pressure pulse.","authors":"Mathieu Oléron, Grégoire Clement, Samuel Hidalgo-Caballero, Masoodah Gunny, Finn Box, Matthieu Labousse, Joshua D McGraw","doi":"10.1140/epje/s10189-025-00493-4","DOIUrl":"10.1140/epje/s10189-025-00493-4","url":null,"abstract":"<p><p>Droplet generation under steady conditions is a common microfluidic method for producing biphasic systems. However, this process works only over a limited range of imposed pressure: beyond a critical value, a stable liquid jet can instead form. Furthermore, for a given geometry, the pressure conditions set both the generation rate of droplets and their volume. Here, we report on-demand droplet production using a positive pressure pulse to the dispersed-phase inlet of a flow-focusing geometry. This strategy enables confined droplet generation within and beyond the pressure range observed under steady conditions, and decouples volume and production rate. In particular, elongated plugs not possible under steady conditions may be formed when the maximal pressure during the pulse reaches the jet regime. The measured volume of droplets-on-demand as well as the onset of droplet generation are both captured with a simple model that considers hydraulic resistances. This work provides a strategy and design rules for processes that require individual droplets or elongated plugs in a simple microfluidic chip design.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 6-7","pages":"35"},"PeriodicalIF":2.2,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222393/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144551648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction to correlation networks: Interdisciplinary approaches beyond thresholding 相关网络导论:超越阈值的跨学科方法
IF 23.9 1区 物理与天体物理
Physics Reports Pub Date : 2025-06-30 DOI: 10.1016/j.physrep.2025.06.002
Naoki Masuda , Zachary M. Boyd , Diego Garlaschelli , Peter J. Mucha
{"title":"Introduction to correlation networks: Interdisciplinary approaches beyond thresholding","authors":"Naoki Masuda ,&nbsp;Zachary M. Boyd ,&nbsp;Diego Garlaschelli ,&nbsp;Peter J. Mucha","doi":"10.1016/j.physrep.2025.06.002","DOIUrl":"10.1016/j.physrep.2025.06.002","url":null,"abstract":"<div><div>Many empirical networks originate from correlational data, arising in domains as diverse as psychology, neuroscience, genomics, microbiology, finance, and climate science. Specialized algorithms and theory have been developed in different application domains for working with such networks, as well as in statistics, network science, and computer science, often with limited communication between practitioners in different fields. This leaves significant room for cross-pollination across disciplines. A central challenge is that it is not always clear how to best transform correlation matrix data into networks for the application at hand, and probably the most widespread method, i.e., thresholding on the correlation value to create either unweighted or weighted networks, suffers from multiple problems. In this article, we review various methods of constructing and analyzing correlation networks, ranging from thresholding and its improvements to weighted networks, regularization, dynamic correlation networks, threshold-free approaches, comparison with null models, and more. Finally, we propose and discuss recommended practices and a variety of key open questions currently confronting this field.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1136 ","pages":"Pages 1-39"},"PeriodicalIF":23.9,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144517941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in reactions, momentum transfer, and energy transfer processes for nanoparticles in processing non-thermal plasmas 纳米粒子处理非热等离子体的反应、动量传递和能量传递过程的研究进展
IF 23.9 1区 物理与天体物理
Physics Reports Pub Date : 2025-06-27 DOI: 10.1016/j.physrep.2025.06.001
Chenxi Li , Franko Greiner , Xiaoshuang Chen , Christopher J. Hogan
{"title":"Progress in reactions, momentum transfer, and energy transfer processes for nanoparticles in processing non-thermal plasmas","authors":"Chenxi Li ,&nbsp;Franko Greiner ,&nbsp;Xiaoshuang Chen ,&nbsp;Christopher J. Hogan","doi":"10.1016/j.physrep.2025.06.001","DOIUrl":"10.1016/j.physrep.2025.06.001","url":null,"abstract":"<div><div>Nanoparticles can form and grow from vapor phase precursors within processing non-thermal plasmas (NTPs). In physical and chemical vapor deposition NTPs, such particles can act as contaminants, and measures need to be taken to either avoid their formation, or to prevent their deposition onto product thin films. NTPs can also be used to intentionally synthesize nanomaterials at industrially scalable levels. In both instances, nanoparticle behavior and the effects nanoparticles may have on the plasma depend upon particle interactions with the surrounding plasma species and neutral gas. Understanding and predicting the behavior of nanoparticles in NTPs requires the development of models for collision limited reactions, momentum transfer, and energy transfer between particles, electron, ions, photons, and neutral gas. As NTPs can be operated at a wide range of pressures, these transport processes occur over a wide range of collisionalities, and are also strongly influenced by both short range and long range potential interactions. The purpose of this review is to compile state-of-the-art knowledge in predicting the behavior of nanoparticles in plasmas with an emphasis on charging, momentum transfer, and energy transfer processes between particles and the surrounding plasma environment. Model development for nanoparticle reactivity and transport in NTPs lies at the interface of dusty plasma physics and aerosol physics, and efforts are made throughout the review to present, intercompare, and blend approaches from these two, often distinct research communities. The review begins by introducing applications and instances where nanoparticles are encountered in NTPs, and subsequently introduces multidimensional nanoparticle population balance modeling. Solution to population balance modeling highlights the need to develop accurate nanoparticle charging rate models, momentum transfer models, and energy transfer models, which are then discussed in successive chapters. Modeling approaches to examine the evolution of particle size distributions in plasmas are discussed, as are the effects of passage through plasma afterglows. Finally, the review concludes with a discussion of nanoparticle voids and waves which can form in NTPs, and an overview of in-situ and extractive measurement techniques to characterize nanoparticle size distributions, number densities, and charge levels. This review is intended both for the aerosol research community as an introduction to the unique aspects of nanoparticle behavior in non-equilibrium environments, and for the plasma community, introducing models arising from predicting the behavior of aerosols, which can be expanded to predict nanoparticle behavior in NTPs.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1135 ","pages":"Pages 1-73"},"PeriodicalIF":23.9,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144490598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Osmotic pressure induces unexpected relaxation of contractile 3D microtissue. 渗透压诱导收缩的三维显微组织意想不到的松弛。
IF 2.2 4区 物理与天体物理
The European Physical Journal E Pub Date : 2025-06-24 DOI: 10.1140/epje/s10189-025-00497-0
Giovanni Cappello, Fanny Wodrascka, Genesis Marquez-Vivas, Amr Eid Radwan, Parvathy Anoop, Pietro Mascheroni, Jonathan Fouchard, Ben Fabry, Davide Ambrosi, Pierre Recho, Simon de Beco, Martial Balland, Thomas Boudou
{"title":"Osmotic pressure induces unexpected relaxation of contractile 3D microtissue.","authors":"Giovanni Cappello, Fanny Wodrascka, Genesis Marquez-Vivas, Amr Eid Radwan, Parvathy Anoop, Pietro Mascheroni, Jonathan Fouchard, Ben Fabry, Davide Ambrosi, Pierre Recho, Simon de Beco, Martial Balland, Thomas Boudou","doi":"10.1140/epje/s10189-025-00497-0","DOIUrl":"10.1140/epje/s10189-025-00497-0","url":null,"abstract":"<p><p>Cell contraction and proliferation, matrix secretion and external mechanical forces induce compression during embryogenesis and tumor growth, which in turn regulate cell proliferation, metabolism or differentiation. How compression affects tissue contractility, a hallmark of tissue function, is however unknown. Here we apply osmotic compression to microtissues of either mouse colon adenocarcinoma CT26 cells, mouse NIH 3T3 fibroblasts, or human primary colon cancer-associated fibroblasts. Microtissues are anchored to flexible pillars that serve as force transducers. We observe that low-amplitude osmotic compression induces a rapid relaxation of tissue contractility, primed by the deformation of the extracellular matrix. Furthermore, we show that this compression-induced relaxation is independent of the cell type, proportional to the initial tissue contractility, and depends on RhoA-mediated myosin activity. Together, our results demonstrate that compressive stress can relax active tissue force, and points to a potential role of this feedback mechanism during morphogenetic events such as onco- or embryogenesis.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 6-7","pages":"34"},"PeriodicalIF":2.2,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187822/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144473710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Size distribution of decaying foam bubbles. 衰变泡沫气泡的尺寸分布。
IF 2.2 4区 物理与天体物理
The European Physical Journal E Pub Date : 2025-06-21 DOI: 10.1140/epje/s10189-025-00498-z
Ildoo Kim
{"title":"Size distribution of decaying foam bubbles.","authors":"Ildoo Kim","doi":"10.1140/epje/s10189-025-00498-z","DOIUrl":"10.1140/epje/s10189-025-00498-z","url":null,"abstract":"<p><p>The most studies on the stability of foam bubbles investigated the mechanical stability of thin films between bubbles due to the drainage by gravity. In the current work, we take an alternative approach by assuming the rupture of bubbles as a series of random events and by investigating the time evolution of the size distribution of foam bubbles over a long time up to several hours. For this purpose, we first prepared layers of bubbles on Petri dishes by shaking soap solutions of a few different concentrations, and then we monitored the Petri dishes by using a time-lapse video imaging technique. We analyzed the captured images by custom software to count the bubble size distribution with respect to the initial concentration and elapsed time. From the statistics on our data, we find that the total bubble volume decreases exponentially in time, and the exponent, i.e., the mean lifetime, is a function of the bubble size. The mean lifetimes of larger bubbles are observed to be shorter than those of smaller bubbles, by approximately a factor of 2.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 6-7","pages":"33"},"PeriodicalIF":2.2,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144339749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roughness exponents of the liquid/vapor/solid contact line on surfaces with dilute random Gaussian defects: numerical study. 稀随机高斯缺陷表面液/气/固接触线的粗糙度指数:数值研究。
IF 2.2 4区 物理与天体物理
The European Physical Journal E Pub Date : 2025-06-16 DOI: 10.1140/epje/s10189-025-00486-3
Stanimir Iliev, Nina Pesheva, Pavel Iliev
{"title":"Roughness exponents of the liquid/vapor/solid contact line on surfaces with dilute random Gaussian defects: numerical study.","authors":"Stanimir Iliev, Nina Pesheva, Pavel Iliev","doi":"10.1140/epje/s10189-025-00486-3","DOIUrl":"10.1140/epje/s10189-025-00486-3","url":null,"abstract":"<p><p>We study here the roughness exponents of the averaged contact line width of a liquid in contact with flat, weakly heterogeneous substrates containing dilute, randomly distributed Gaussian-type defects. For this purpose, we employ the full capillary model. The obtained results for the magnitude of the averaged root-mean-square width of the contact line show that there is only one interval in which the width scales with length as a power function. The numerical studies and analysis indicate that this interval should be regarded as a length scale smaller than the jog length. The roughness exponent found is not a universal constant independent of the apparent contact angle formed by the liquid on the solid surface. It closely approaches the theoretically predicted value of 1/2 [M. O. Robbins, and J. F. Joanny, Europhys. Lett. 3, 729 (1987)] only within the contact angle ranges of <math><msup><mn>10</mn> <mo>∘</mo></msup> </math> to <math><msup><mn>30</mn> <mo>∘</mo></msup> </math> and <math><msup><mn>150</mn> <mo>∘</mo></msup> </math> to <math><msup><mn>170</mn> <mo>∘</mo></msup> </math> . Furthermore, it can be considered that there is still a significant range of contact angles, from <math><msup><mn>55</mn> <mo>∘</mo></msup> </math> up to <math><msup><mn>125</mn> <mo>∘</mo></msup> </math> , in which the roughness exponent remains practically constant, however, having a value of 0.8.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 6-7","pages":"32"},"PeriodicalIF":2.2,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144300929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信