{"title":"Background-dependent and classical correspondences between f(Q) and f(T) gravity","authors":"Cheng Wu, Xin Ren, Yuhang Yang, Yu-Min Hu, Emmanuel N. Saridakis","doi":"10.1140/epjc/s10052-025-14822-6","DOIUrl":null,"url":null,"abstract":"<div><p><i>f</i>(<i>Q</i>) and <i>f</i>(<i>T</i>) gravity are based on fundamentally different geometric frameworks, yet they exhibit many similar properties. This article provides a comprehensive summary and comparative analysis of the various theoretical branches of torsional gravity and non-metric gravity, which arise from different choices of affine connection. We identify two types of background-dependent and classical correspondences between these two theories of gravity. The first correspondence is established through their equivalence within the Minkowski spacetime background. To achieve this, we develop the tetrad-spin formulation of <i>f</i>(<i>Q</i>) gravity and derive the corresponding expression for the spin connection. The second correspondence is based on the equivalence of their equations of motion. Utilizing a metric-affine approach, we derive the general affine connection for static and spherically symmetric spacetime in <i>f</i>(<i>Q</i>) gravity and compare its equations of motion with those of <i>f</i>(<i>T</i>) gravity. Among others, our results reveal that, <i>f</i>(<i>T</i>) solutions are not simply a subset of <i>f</i>(<i>Q</i>) solutions; rather, they encompass a complex solution beyond <i>f</i>(<i>Q</i>) gravity in black hole background.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 10","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14822-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14822-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
f(Q) and f(T) gravity are based on fundamentally different geometric frameworks, yet they exhibit many similar properties. This article provides a comprehensive summary and comparative analysis of the various theoretical branches of torsional gravity and non-metric gravity, which arise from different choices of affine connection. We identify two types of background-dependent and classical correspondences between these two theories of gravity. The first correspondence is established through their equivalence within the Minkowski spacetime background. To achieve this, we develop the tetrad-spin formulation of f(Q) gravity and derive the corresponding expression for the spin connection. The second correspondence is based on the equivalence of their equations of motion. Utilizing a metric-affine approach, we derive the general affine connection for static and spherically symmetric spacetime in f(Q) gravity and compare its equations of motion with those of f(T) gravity. Among others, our results reveal that, f(T) solutions are not simply a subset of f(Q) solutions; rather, they encompass a complex solution beyond f(Q) gravity in black hole background.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.