Structural and magnetic tailoring of Co-Cu ferrite nanoparticles via Cd2+ substitution: a multi-characterization approach

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
D. El-Said Bakeer, M. Y. El Sayed, E. M. Abdallah, R. Awad, S. G. Elsharkawy
{"title":"Structural and magnetic tailoring of Co-Cu ferrite nanoparticles via Cd2+ substitution: a multi-characterization approach","authors":"D. El-Said Bakeer,&nbsp;M. Y. El Sayed,&nbsp;E. M. Abdallah,&nbsp;R. Awad,&nbsp;S. G. Elsharkawy","doi":"10.1007/s00339-025-08897-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the structural and magnetic tunability of Co–Cu ferrite nanoparticles via dual-site substitution of Cd<sup>2+</sup> at both Co<sup>2+</sup> and Cu<sup>2+</sup> lattice sites in the Co<sub>0.5</sub>Cu<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> spinel lattice. Nanoparticles with the nominal composition Co<sub>0.5−x</sub>Cu<sub>0.5−x</sub>Cd<sub>2x</sub>Fe<sub>2</sub>O<sub>4</sub> (x = 0.00, 0.01, 0.02, 0.04, 0.06) were synthesized using an efficient co-precipitation method. The large ionic radius of Cd<sup>2+</sup> promotes its occupation of tetrahedral sites, which disrupts the magnetocrystalline anisotropy associated with Co<sup>2+</sup> and the Jahn–Teller distortions associated with Cu<sup>2+</sup>, leading to cation redistribution, modifications in superexchange interactions, and potentially the initiation of spin canting. Compared to single-site doping, this dual-site substitution introduces greater structural and magnetic complexity, offering a promising approach for multifunctional ferrite design. X-ray diffraction (XRD) confirmed a predominant face-centered cubic spinel phase with Co<sub>0.5</sub>Cu<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> as the primary phase and a minor hematite (Fe<sub>2</sub>O<sub>3</sub>) secondary phase. Increasing Cd<sup>2+</sup> content induced a systematic lattice parameter expansion and crystallite size reduction (from 15.47 nm to 12.11 nm), indicating lattice distortion due to ionic substitution. TEM analysis showed quasi-spherical, slightly agglomerated nanoparticles with sizes decreasing from 15.47 nm to 12.11 nm as x increased from 0.00 to 0.06. HRTEM confirmed the material’s polycrystalline nature through observed (220) and (311) lattice fringes. FTIR spectra displayed two characteristic absorption bands 510–580 cm<sup>−1</sup> and 400–450 cm<sup>−1</sup>) confirming spinel formation, while Raman spectroscopy revealed a blue shift in the <span>\\(\\:{A}_{1g}\\)</span>mode, associated with Fe<sup>3+</sup> migration towards tetrahedral sites. Additionally, XPS analysis confirmed the oxidation states of the constituent elements in the samples as Co<sup>2+</sup>, Cu<sup>2+</sup>, Fe<sup>3+</sup>, Cd<sup>2+</sup>and O<sup>2−</sup>. Vibrating sample magnetometry (VSM) measurements showed ferromagnetic hysteresis loops with a non-linear variation of saturation magnetization (<span>\\(\\:{M}_{s}\\)</span>) and a significant reduction in coercivity (<span>\\(\\:{H}_{c}\\)</span>) from 851.98 G to 306.06 G, reflecting progressive magnetic softening with Cd²⁺ incorporation. Complementary, ESR analysis showed asymmetric resonance line shapes, a downshift in <span>\\(\\:{H}_{r}\\)</span>, and an enhancement in the Landé <span>\\(\\:g\\)</span> -factor, which was consistent with modifications in the local magnetic environment. These tunable structural and magnetic properties highlight the potential of Cd-substituted Co–Cu ferrites for applications in high-frequency electronics and EMI shielding.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00339-025-08897-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08897-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the structural and magnetic tunability of Co–Cu ferrite nanoparticles via dual-site substitution of Cd2+ at both Co2+ and Cu2+ lattice sites in the Co0.5Cu0.5Fe2O4 spinel lattice. Nanoparticles with the nominal composition Co0.5−xCu0.5−xCd2xFe2O4 (x = 0.00, 0.01, 0.02, 0.04, 0.06) were synthesized using an efficient co-precipitation method. The large ionic radius of Cd2+ promotes its occupation of tetrahedral sites, which disrupts the magnetocrystalline anisotropy associated with Co2+ and the Jahn–Teller distortions associated with Cu2+, leading to cation redistribution, modifications in superexchange interactions, and potentially the initiation of spin canting. Compared to single-site doping, this dual-site substitution introduces greater structural and magnetic complexity, offering a promising approach for multifunctional ferrite design. X-ray diffraction (XRD) confirmed a predominant face-centered cubic spinel phase with Co0.5Cu0.5Fe2O4 as the primary phase and a minor hematite (Fe2O3) secondary phase. Increasing Cd2+ content induced a systematic lattice parameter expansion and crystallite size reduction (from 15.47 nm to 12.11 nm), indicating lattice distortion due to ionic substitution. TEM analysis showed quasi-spherical, slightly agglomerated nanoparticles with sizes decreasing from 15.47 nm to 12.11 nm as x increased from 0.00 to 0.06. HRTEM confirmed the material’s polycrystalline nature through observed (220) and (311) lattice fringes. FTIR spectra displayed two characteristic absorption bands 510–580 cm−1 and 400–450 cm−1) confirming spinel formation, while Raman spectroscopy revealed a blue shift in the \(\:{A}_{1g}\)mode, associated with Fe3+ migration towards tetrahedral sites. Additionally, XPS analysis confirmed the oxidation states of the constituent elements in the samples as Co2+, Cu2+, Fe3+, Cd2+and O2−. Vibrating sample magnetometry (VSM) measurements showed ferromagnetic hysteresis loops with a non-linear variation of saturation magnetization (\(\:{M}_{s}\)) and a significant reduction in coercivity (\(\:{H}_{c}\)) from 851.98 G to 306.06 G, reflecting progressive magnetic softening with Cd²⁺ incorporation. Complementary, ESR analysis showed asymmetric resonance line shapes, a downshift in \(\:{H}_{r}\), and an enhancement in the Landé \(\:g\) -factor, which was consistent with modifications in the local magnetic environment. These tunable structural and magnetic properties highlight the potential of Cd-substituted Co–Cu ferrites for applications in high-frequency electronics and EMI shielding.

通过Cd2+取代的Co-Cu铁氧体纳米颗粒的结构和磁性裁剪:一种多表征方法
本研究通过在Co0.5Cu0.5Fe2O4尖晶石晶格的Co2+和Cu2+晶格位置上双位点取代Cd2+,研究了Co-Cu铁氧体纳米颗粒的结构和磁性可调性。采用高效共沉淀法合成了名义成分为Co0.5−xCu0.5−xCd2xFe2O4 (x = 0.00, 0.01, 0.02, 0.04, 0.06)的纳米颗粒。Cd2+的大离子半径促进其占据四面体位置,从而破坏与Co2+相关的磁晶各向异性和与Cu2+相关的jan - teller扭曲,导致阳离子重新分配,超交换相互作用的修饰,并可能引发自旋倾斜。与单位点掺杂相比,这种双位点取代引入了更大的结构和磁性复杂性,为多功能铁氧体设计提供了一种有前途的方法。x射线衍射(XRD)证实,该材料主要为面心立方尖晶石相,主要相为Co0.5Cu0.5Fe2O4,次要相为少量赤铁矿(Fe2O3)。随着Cd2+含量的增加,晶格参数扩大,晶体尺寸减小(从15.47 nm减小到12.11 nm),表明离子取代导致晶格畸变。透射电镜分析显示,随着x值从0.00增大到0.06,纳米颗粒呈准球形,微团聚,粒径从15.47 nm减小到12.11 nm。HRTEM通过观察到的(220)和(311)晶格条纹证实了材料的多晶性质。FTIR光谱显示两个特征吸收带(510-580 cm−1和400-450 cm−1),证实尖晶石的形成,而拉曼光谱显示\(\:{A}_{1g}\)模式的蓝移,与Fe3+向四面体位的迁移有关。此外,XPS分析证实了样品中组成元素的氧化态为Co2+, Cu2+, Fe3+, Cd2+和O2−。振动样品磁强计(VSM)测量结果显示,铁磁磁滞回线的饱和磁化强度(\(\:{M}_{s}\))呈非线性变化,矫顽力(\(\:{H}_{c}\))从851.98 G显著降低到306.06 G,反映出Cd 2 +掺入后的磁性逐渐软化。此外,ESR分析显示共振线形状不对称,\(\:{H}_{r}\)下降,land \(\:g\)因子增强,这与局部磁环境的变化一致。这些可调的结构和磁性突出了cd取代Co-Cu铁氧体在高频电子和EMI屏蔽方面的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信