用于低剂量近红外光探测和图像通信的高响应度胶体量子点光电晶体管。

IF 20.6 Q1 OPTICS
Shijie Zhan,Benxuan Li,Tong Chen,Yudi Tu,Hong Ji,Diyar Mousa Othman,Mingfei Xiao,Renjun Liu,Zuhong Zhang,Ying Tang,Wenlong Ming,Meng Li,Hang Zhou,Bo Hou
{"title":"用于低剂量近红外光探测和图像通信的高响应度胶体量子点光电晶体管。","authors":"Shijie Zhan,Benxuan Li,Tong Chen,Yudi Tu,Hong Ji,Diyar Mousa Othman,Mingfei Xiao,Renjun Liu,Zuhong Zhang,Ying Tang,Wenlong Ming,Meng Li,Hang Zhou,Bo Hou","doi":"10.1038/s41377-025-01853-7","DOIUrl":null,"url":null,"abstract":"The surging demand and adoption of infrared photodetectors (IRPDs) in sectors of imaging, mobile, healthcare, automobiles, and optical communication are hindered by the prohibitive costs of traditional IRPD materials such as InGaAs and HgCdTe. Quantum dots (QDs), especially lead chalcogenide (PbS) QDs, represent the next-generation low-bandgap semiconductors for near-infrared (NIR) detection due to their high optical absorption coefficient, tunable bandgap, low fabrication costs, and device compatibility. Innovative techniques such as ligand exchange processes have been proposed to boost the performance of PbS QDs photodetectors, mostly using short ligands like 1,2-ethanedithiol (EDT) and tetrabutylammonium iodide (TBAI). Our study explores the use of long-chain dithiol ligands to enhance the responsivity of PbS QDs/InGaZnO phototransistors. Long-chain dithiol ligands are found to suppress horizontal electron transport/leakage and electron trapping, which is beneficial for responsivity. Utilizing a novel ligand-exchange technique with 1,10-decanedithiol (DDT), we develop high-performance hybrid phototransistors with detectivity exceeding 1014 Jones. Based on these phototransistors, we demonstrate image communication through a NIR optical communication system. The long-ligand PbS QDs/InGaZnO hybrid phototransistor demonstrates significant potential for NIR low-dose imaging and optical communication, particularly in scenarios requiring the detection of weak light signals at low frequencies.","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"30 1","pages":"201"},"PeriodicalIF":20.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High responsivity colloidal quantum dots phototransistors for low-dose near-infrared photodetection and image communication.\",\"authors\":\"Shijie Zhan,Benxuan Li,Tong Chen,Yudi Tu,Hong Ji,Diyar Mousa Othman,Mingfei Xiao,Renjun Liu,Zuhong Zhang,Ying Tang,Wenlong Ming,Meng Li,Hang Zhou,Bo Hou\",\"doi\":\"10.1038/s41377-025-01853-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The surging demand and adoption of infrared photodetectors (IRPDs) in sectors of imaging, mobile, healthcare, automobiles, and optical communication are hindered by the prohibitive costs of traditional IRPD materials such as InGaAs and HgCdTe. Quantum dots (QDs), especially lead chalcogenide (PbS) QDs, represent the next-generation low-bandgap semiconductors for near-infrared (NIR) detection due to their high optical absorption coefficient, tunable bandgap, low fabrication costs, and device compatibility. Innovative techniques such as ligand exchange processes have been proposed to boost the performance of PbS QDs photodetectors, mostly using short ligands like 1,2-ethanedithiol (EDT) and tetrabutylammonium iodide (TBAI). Our study explores the use of long-chain dithiol ligands to enhance the responsivity of PbS QDs/InGaZnO phototransistors. Long-chain dithiol ligands are found to suppress horizontal electron transport/leakage and electron trapping, which is beneficial for responsivity. Utilizing a novel ligand-exchange technique with 1,10-decanedithiol (DDT), we develop high-performance hybrid phototransistors with detectivity exceeding 1014 Jones. Based on these phototransistors, we demonstrate image communication through a NIR optical communication system. The long-ligand PbS QDs/InGaZnO hybrid phototransistor demonstrates significant potential for NIR low-dose imaging and optical communication, particularly in scenarios requiring the detection of weak light signals at low frequencies.\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"30 1\",\"pages\":\"201\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-025-01853-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01853-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

红外探测器(IRPD)在成像、移动、医疗保健、汽车和光通信等领域的需求和采用的激增,受到InGaAs和HgCdTe等传统IRPD材料的高昂成本的阻碍。量子点(QDs),特别是硫系铅(PbS)量子点,由于其高光吸收系数、可调带隙、低制造成本和器件兼容性,代表了用于近红外(NIR)探测的下一代低带隙半导体。人们提出了一些创新技术,如配体交换过程,以提高PbS量子点光电探测器的性能,主要使用短配体,如1,2-乙二醇(EDT)和四丁基碘化铵(TBAI)。我们的研究探索了使用长链二硫醇配体来提高PbS量子点/InGaZnO光电晶体管的响应性。发现长链二硫醇配体抑制水平电子传递/泄漏和电子捕获,有利于提高响应性。利用一种新的配体交换技术与1,10-癸二硫醇(DDT),我们开发了高性能的混合光电晶体管,其探测率超过1014琼斯。基于这些光电晶体管,我们演示了通过近红外光通信系统进行图像通信。长配体PbS量子点/InGaZnO混合光电晶体管在近红外低剂量成像和光通信方面显示出巨大的潜力,特别是在需要检测低频弱光信号的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High responsivity colloidal quantum dots phototransistors for low-dose near-infrared photodetection and image communication.
The surging demand and adoption of infrared photodetectors (IRPDs) in sectors of imaging, mobile, healthcare, automobiles, and optical communication are hindered by the prohibitive costs of traditional IRPD materials such as InGaAs and HgCdTe. Quantum dots (QDs), especially lead chalcogenide (PbS) QDs, represent the next-generation low-bandgap semiconductors for near-infrared (NIR) detection due to their high optical absorption coefficient, tunable bandgap, low fabrication costs, and device compatibility. Innovative techniques such as ligand exchange processes have been proposed to boost the performance of PbS QDs photodetectors, mostly using short ligands like 1,2-ethanedithiol (EDT) and tetrabutylammonium iodide (TBAI). Our study explores the use of long-chain dithiol ligands to enhance the responsivity of PbS QDs/InGaZnO phototransistors. Long-chain dithiol ligands are found to suppress horizontal electron transport/leakage and electron trapping, which is beneficial for responsivity. Utilizing a novel ligand-exchange technique with 1,10-decanedithiol (DDT), we develop high-performance hybrid phototransistors with detectivity exceeding 1014 Jones. Based on these phototransistors, we demonstrate image communication through a NIR optical communication system. The long-ligand PbS QDs/InGaZnO hybrid phototransistor demonstrates significant potential for NIR low-dose imaging and optical communication, particularly in scenarios requiring the detection of weak light signals at low frequencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信