Diana Pereira, Torsten Wieduwilt, Walter Hauswald, Matthias Zeisberger, Marta S. Ferreira, Markus A. Schmidt
{"title":"3D nanoprinted fiber-interfaced hollow-core waveguides for high-accuracy nanoparticle tracking analysis","authors":"Diana Pereira, Torsten Wieduwilt, Walter Hauswald, Matthias Zeisberger, Marta S. Ferreira, Markus A. Schmidt","doi":"10.1038/s41377-025-01827-9","DOIUrl":null,"url":null,"abstract":"<p>The integration of functional components into flexible photonic environments is a critical area of research in integrated photonics and is essential for high-precision sensing. This work presents a novel concept of interfacing square-core hollow-core waveguides with commercially available optical fibers using 3D nanoprinting, and demonstrates its practical relevance through a nanoscience-based characterization technique. In detail, this innovative concept results in a monolithic, fully fiber-integrated device with key advantages such as alignment-free operation, high-purity fundamental mode excitation, full polarization control, and a unique handling flexibility. For the first time, the application potential of a fiber-interfaced waveguide in nanoscale analysis is demonstrated by performing nanoparticle-tracking-analysis experiments. These experiments involve the tracking and analysis of individual gold nanospheres diffusing in the hollow core waveguide, enabled by nearly aberration-free imaging, extended observation times, and homogeneous light-line illumination. The study comprehensively covers design strategy, experimental implementation, key principles, optical characterization, and practical applications. The fiber-interfaced hollow-core waveguide concept offers significant potential for applications in bioanalytics, environmental sciences, quantum technologies, optical manipulation, and life sciences. It also paves the way for the development of novel all-fiber devices that exploit enhanced light-matter interaction in a monolithic form suitable for flexible and remote applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"12 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01827-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of functional components into flexible photonic environments is a critical area of research in integrated photonics and is essential for high-precision sensing. This work presents a novel concept of interfacing square-core hollow-core waveguides with commercially available optical fibers using 3D nanoprinting, and demonstrates its practical relevance through a nanoscience-based characterization technique. In detail, this innovative concept results in a monolithic, fully fiber-integrated device with key advantages such as alignment-free operation, high-purity fundamental mode excitation, full polarization control, and a unique handling flexibility. For the first time, the application potential of a fiber-interfaced waveguide in nanoscale analysis is demonstrated by performing nanoparticle-tracking-analysis experiments. These experiments involve the tracking and analysis of individual gold nanospheres diffusing in the hollow core waveguide, enabled by nearly aberration-free imaging, extended observation times, and homogeneous light-line illumination. The study comprehensively covers design strategy, experimental implementation, key principles, optical characterization, and practical applications. The fiber-interfaced hollow-core waveguide concept offers significant potential for applications in bioanalytics, environmental sciences, quantum technologies, optical manipulation, and life sciences. It also paves the way for the development of novel all-fiber devices that exploit enhanced light-matter interaction in a monolithic form suitable for flexible and remote applications.