Dispersion-engineered spin photonics based on folded-path metasurfaces

IF 20.6 Q1 OPTICS
Fei Zhang, Hanlin Bao, Mingbo Pu, Yinghui Guo, Tongtong Kang, Xiong Li, Qiong He, Mingfeng Xu, Xiaoliang Ma, Xiangang Luo
{"title":"Dispersion-engineered spin photonics based on folded-path metasurfaces","authors":"Fei Zhang, Hanlin Bao, Mingbo Pu, Yinghui Guo, Tongtong Kang, Xiong Li, Qiong He, Mingfeng Xu, Xiaoliang Ma, Xiangang Luo","doi":"10.1038/s41377-025-01850-w","DOIUrl":null,"url":null,"abstract":"<p>Spin photonics revolutionizes photonic technology by enabling precise manipulation of photon spin states, with spin-decoupled metasurfaces emerging as pivotal in complex optical field manipulation. Here, we propose a folded-path metasurface concept that enables independent dispersion and phase control of two opposite spin states, effectively overcoming the limitations of spin photonics in achieving broadband decoupling and higher integration levels. This advanced dispersion engineering is achieved by modifying the equivalent length of a folded path, generated by a virtual reflective surface, in contrast to previous methods that depended on effective refractive index control by altering structural geometries. Our approach unlocks previously unattainable capabilities, such as achieving achromatic focusing and achromatic spin Hall effect using the rotational degree of freedom, and generating spatiotemporal vector optical fields with only a single metasurface. This advancement substantially broadens the potential of metasurface-based spin photonics, extending its applications from the spatial domain to the spatiotemporal domain.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"8 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01850-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Spin photonics revolutionizes photonic technology by enabling precise manipulation of photon spin states, with spin-decoupled metasurfaces emerging as pivotal in complex optical field manipulation. Here, we propose a folded-path metasurface concept that enables independent dispersion and phase control of two opposite spin states, effectively overcoming the limitations of spin photonics in achieving broadband decoupling and higher integration levels. This advanced dispersion engineering is achieved by modifying the equivalent length of a folded path, generated by a virtual reflective surface, in contrast to previous methods that depended on effective refractive index control by altering structural geometries. Our approach unlocks previously unattainable capabilities, such as achieving achromatic focusing and achromatic spin Hall effect using the rotational degree of freedom, and generating spatiotemporal vector optical fields with only a single metasurface. This advancement substantially broadens the potential of metasurface-based spin photonics, extending its applications from the spatial domain to the spatiotemporal domain.

Abstract Image

基于折叠路径超表面的色散工程自旋光子学
自旋光子学通过精确操纵光子自旋态而彻底改变了光子技术,自旋去耦的超表面在复杂的光场操纵中成为关键。在这里,我们提出了一种折叠路径超表面概念,可以实现两个相反自旋态的独立色散和相位控制,有效克服了自旋光子学在实现宽带解耦和更高集成度方面的局限性。这种先进的色散工程是通过修改由虚拟反射面产生的折叠路径的等效长度来实现的,而不是以前依赖于通过改变结构几何形状来控制有效折射率的方法。我们的方法解锁了以前无法实现的功能,例如利用旋转自由度实现消色差聚焦和消色差自旋霍尔效应,以及仅用单个超表面产生时空矢量光场。这一进展极大地拓宽了基于超表面的自旋光子学的潜力,将其应用从空间领域扩展到时空领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信