{"title":"Chip-to-chip photonic quantum teleportation over optical fibers of 12.3 km","authors":"Dongning Liu, Zhanping Jin, Jingyuan Liu, Xiaotong Zou, Xiaosong Ren, Hao Li, Lixing You, Xue Feng, Fang Liu, Kaiyu Cui, Yidong Huang, Wei Zhang","doi":"10.1038/s41377-025-01920-z","DOIUrl":null,"url":null,"abstract":"<p>Quantum teleportation is a crucial function in quantum networks. The implementation of photonic quantum teleportation could be highly simplified by quantum photonic circuits. To extend chip-to-chip teleportation distance, more effort is needed on both chip design and system implementation. In this work, we demonstrate a time-bin-based chip-to-chip photonic quantum teleportation over optical fibers under the scenario of a star-topology quantum network. Three quantum photonic circuits are designed and fabricated on a single chip, each serving specific functions: heralded single-photon generation at the user node, entangled photon pair generation and BSM at the relay node, and projective measurement of the teleported photons at the central node. The unbalanced Mach–Zehnder interferometers (UMZI) for time-bin encoding in these quantum photonic circuits are optimized to reduce insertion losses and suppress noise photons generated on the chip. Besides, an active feedback system is employed to suppress the impact of fiber length fluctuation between the circuits, achieving a stable quantum interference for the BSM in the relay node. As a result, a photonic quantum teleportation over optical fibers of 12.3 km is achieved based on these quantum photonic circuits, showing the potential of chip integration for the development of quantum networks.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"21 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01920-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum teleportation is a crucial function in quantum networks. The implementation of photonic quantum teleportation could be highly simplified by quantum photonic circuits. To extend chip-to-chip teleportation distance, more effort is needed on both chip design and system implementation. In this work, we demonstrate a time-bin-based chip-to-chip photonic quantum teleportation over optical fibers under the scenario of a star-topology quantum network. Three quantum photonic circuits are designed and fabricated on a single chip, each serving specific functions: heralded single-photon generation at the user node, entangled photon pair generation and BSM at the relay node, and projective measurement of the teleported photons at the central node. The unbalanced Mach–Zehnder interferometers (UMZI) for time-bin encoding in these quantum photonic circuits are optimized to reduce insertion losses and suppress noise photons generated on the chip. Besides, an active feedback system is employed to suppress the impact of fiber length fluctuation between the circuits, achieving a stable quantum interference for the BSM in the relay node. As a result, a photonic quantum teleportation over optical fibers of 12.3 km is achieved based on these quantum photonic circuits, showing the potential of chip integration for the development of quantum networks.