Nathan Ronceray, Salim Bennani, Marianna Fanouria Mitsioni, Nicole Siegel, Maria J. Marcaida, Claudio Bruschini, Edoardo Charbon, Rahul Roy, Matteo Dal Peraro, Guillermo P. Acuna, Aleksandra Radenovic
{"title":"用门控单光子相机进行单分子的宽视场荧光寿命成像","authors":"Nathan Ronceray, Salim Bennani, Marianna Fanouria Mitsioni, Nicole Siegel, Maria J. Marcaida, Claudio Bruschini, Edoardo Charbon, Rahul Roy, Matteo Dal Peraro, Guillermo P. Acuna, Aleksandra Radenovic","doi":"10.1038/s41377-025-01901-2","DOIUrl":null,"url":null,"abstract":"<p>Fluorescence lifetime imaging microscopy (FLIM) is a powerful tool to discriminate fluorescent molecules or probe their nanoscale environment. Traditionally, FLIM uses time-correlated single-photon counting (TCSPC), which is precise but intrinsically low-throughput due to its dependence on point detectors. Although time-gated cameras have demonstrated the potential for high-throughput FLIM in bright samples with dense labeling, their use in single-molecule microscopy has not been explored extensively. Here, we report fast and accurate single-molecule FLIM with a commercial time-gated single-photon camera. Our optimized acquisition scheme achieves single-molecule lifetime measurements with a precision only about three times less than TCSPC, while imaging with a large number of pixels (512 × 512) allowing for the spatial multiplexing of over 3000 molecules. With this approach, we demonstrate parallelized lifetime measurements of large numbers of labeled pore-forming proteins on supported lipid bilayers, and temporal single-molecule Förster resonance energy transfer measurements at 5-25 Hz. This method holds considerable promise for the advancement of multi-target single-molecule localization microscopy and biopolymer sequencing.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"58 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wide-field fluorescence lifetime imaging of single molecules with a gated single-photon camera\",\"authors\":\"Nathan Ronceray, Salim Bennani, Marianna Fanouria Mitsioni, Nicole Siegel, Maria J. Marcaida, Claudio Bruschini, Edoardo Charbon, Rahul Roy, Matteo Dal Peraro, Guillermo P. Acuna, Aleksandra Radenovic\",\"doi\":\"10.1038/s41377-025-01901-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fluorescence lifetime imaging microscopy (FLIM) is a powerful tool to discriminate fluorescent molecules or probe their nanoscale environment. Traditionally, FLIM uses time-correlated single-photon counting (TCSPC), which is precise but intrinsically low-throughput due to its dependence on point detectors. Although time-gated cameras have demonstrated the potential for high-throughput FLIM in bright samples with dense labeling, their use in single-molecule microscopy has not been explored extensively. Here, we report fast and accurate single-molecule FLIM with a commercial time-gated single-photon camera. Our optimized acquisition scheme achieves single-molecule lifetime measurements with a precision only about three times less than TCSPC, while imaging with a large number of pixels (512 × 512) allowing for the spatial multiplexing of over 3000 molecules. With this approach, we demonstrate parallelized lifetime measurements of large numbers of labeled pore-forming proteins on supported lipid bilayers, and temporal single-molecule Förster resonance energy transfer measurements at 5-25 Hz. This method holds considerable promise for the advancement of multi-target single-molecule localization microscopy and biopolymer sequencing.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":23.4000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-025-01901-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01901-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Wide-field fluorescence lifetime imaging of single molecules with a gated single-photon camera
Fluorescence lifetime imaging microscopy (FLIM) is a powerful tool to discriminate fluorescent molecules or probe their nanoscale environment. Traditionally, FLIM uses time-correlated single-photon counting (TCSPC), which is precise but intrinsically low-throughput due to its dependence on point detectors. Although time-gated cameras have demonstrated the potential for high-throughput FLIM in bright samples with dense labeling, their use in single-molecule microscopy has not been explored extensively. Here, we report fast and accurate single-molecule FLIM with a commercial time-gated single-photon camera. Our optimized acquisition scheme achieves single-molecule lifetime measurements with a precision only about three times less than TCSPC, while imaging with a large number of pixels (512 × 512) allowing for the spatial multiplexing of over 3000 molecules. With this approach, we demonstrate parallelized lifetime measurements of large numbers of labeled pore-forming proteins on supported lipid bilayers, and temporal single-molecule Förster resonance energy transfer measurements at 5-25 Hz. This method holds considerable promise for the advancement of multi-target single-molecule localization microscopy and biopolymer sequencing.