Creating topological exceptional point by on-chip all-dielectric metasurface

IF 23.4 Q1 OPTICS
Cheng Yi, Zejing Wang, Yangyang Shi, Shuai Wan, Jiao Tang, Wanlin Hu, Zile Li, Yongquan Zeng, Qinghua Song, Zhongyang Li
{"title":"Creating topological exceptional point by on-chip all-dielectric metasurface","authors":"Cheng Yi, Zejing Wang, Yangyang Shi, Shuai Wan, Jiao Tang, Wanlin Hu, Zile Li, Yongquan Zeng, Qinghua Song, Zhongyang Li","doi":"10.1038/s41377-025-01955-2","DOIUrl":null,"url":null,"abstract":"<p>Classified as a non-Hermitian system, topological metasurface is one of the ideal platforms for exploring a striking property, that is, the exceptional point (EP). Recently, creating and encircling EP in metasurfaces has triggered various progressive functionalities, including polarization control and optical holographic encoding. However, existing topological metasurfaces mostly rely on plasmonic materials, which introduce inevitable ohmic losses and limit their compatibility with mainstream all-dielectric meta-devices. Additionally, conventional free-space configurations also hinder the integration of multiple meta-devices in compact platforms. Here, an on-chip topological metasurface is experimentally demonstrated to create and engineer the topological phase encircling the EP in all-dielectric architecture. By massively screening the Si meta-atom geometry on the Si<sub>3</sub>N<sub>4</sub> waveguide, a 2π-topological phase shift is obtained by encircling the EP. Through combining with the Pancharatnam-Berry (PB) phase, we decouple the orthogonal circular polarization channels and unfold the independent encoding freedom for different holographic generations. As a proof of concept, the proposed on-chip topological metasurface enables floating holographic visualizations in real-world scenarios, functioning as practical augmented reality (AR) functionalities. Such the all-dielectric on-chip scheme eliminates ohmic losses and enables compatible integration with other on-chip meta-devices, thus suggesting promising applications in next-generation AR devices, multiplexing information storage, and advanced optical displays.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"29 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01955-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Classified as a non-Hermitian system, topological metasurface is one of the ideal platforms for exploring a striking property, that is, the exceptional point (EP). Recently, creating and encircling EP in metasurfaces has triggered various progressive functionalities, including polarization control and optical holographic encoding. However, existing topological metasurfaces mostly rely on plasmonic materials, which introduce inevitable ohmic losses and limit their compatibility with mainstream all-dielectric meta-devices. Additionally, conventional free-space configurations also hinder the integration of multiple meta-devices in compact platforms. Here, an on-chip topological metasurface is experimentally demonstrated to create and engineer the topological phase encircling the EP in all-dielectric architecture. By massively screening the Si meta-atom geometry on the Si3N4 waveguide, a 2π-topological phase shift is obtained by encircling the EP. Through combining with the Pancharatnam-Berry (PB) phase, we decouple the orthogonal circular polarization channels and unfold the independent encoding freedom for different holographic generations. As a proof of concept, the proposed on-chip topological metasurface enables floating holographic visualizations in real-world scenarios, functioning as practical augmented reality (AR) functionalities. Such the all-dielectric on-chip scheme eliminates ohmic losses and enables compatible integration with other on-chip meta-devices, thus suggesting promising applications in next-generation AR devices, multiplexing information storage, and advanced optical displays.

Abstract Image

利用片上全介电超表面制造拓扑异常点
作为一个非厄米系统,拓扑超表面是一个理想的平台来探索一个显著的性质,即例外点(EP)。最近,在超表面中创建和包围EP引发了各种渐进功能,包括偏振控制和光学全息编码。然而,现有的拓扑超表面大多依赖于等离子体材料,这引入了不可避免的欧姆损耗,限制了它们与主流全介电元器件的兼容性。此外,传统的自由空间配置也阻碍了紧凑平台中多个元设备的集成。在这里,实验证明了片上拓扑超表面可以在全介电结构中创建和设计环绕EP的拓扑相。通过在Si3N4波导上大规模筛选Si元原子几何形状,通过环绕EP获得了2π拓扑相移。结合Pancharatnam-Berry (PB)相位,实现了正交圆极化信道的解耦,实现了不同全息代的独立编码自由。作为概念验证,提出的片上拓扑超表面可以在现实世界场景中实现浮动全息可视化,作为实用的增强现实(AR)功能。这种全介质片上方案消除了欧姆损耗,并能够与其他片上元器件兼容集成,因此在下一代AR设备、多路信息存储和先进光学显示中有很好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信