Bioconjugate Chemistry Bioconjugate最新文献

筛选
英文 中文
Reactivity Profiling for High-Yielding Ynamine-Tagged Oligonucleotide Click Chemistry Bioconjugations. 高产率Ynamine标记寡核苷酸点击化学生物接合的反应性分析。
IF 4 2区 化学
Bioconjugate Chemistry Bioconjugate Pub Date : 2024-10-10 DOI: 10.1021/acs.bioconjchem.4c00353
Frederik Peschke, Andrea Taladriz-Sender, Allan J B Watson, Glenn A Burley
{"title":"Reactivity Profiling for High-Yielding Ynamine-Tagged Oligonucleotide Click Chemistry Bioconjugations.","authors":"Frederik Peschke, Andrea Taladriz-Sender, Allan J B Watson, Glenn A Burley","doi":"10.1021/acs.bioconjchem.4c00353","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00353","url":null,"abstract":"<p><p>The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is a key ligation tool used to prepare bioconjugates. Despite the widespread utility of CuAAC to produce discrete 1,4-triazole products, the requirement of a Cu catalyst can result in oxidative damage to these products. Ynamines are superior reactive groups in CuAAC reactions and require lower Cu loadings to produce 1,4-triazole products. This study discloses a strategy to identify optimal reaction conditions for the formation of oligodeoxyribonucleotide (ODN) bioconjugates. First, the surveying of reaction conditions identified that the ratio of Cu to the choice of reductant (i.e., either sodium ascorbate or glutathione) influences the reaction kinetics and the rate of degradation of bioconjugate products. Second, optimized conditions were used to prepare a variety of ODN-tagged products and ODN-protein conjugates and compared to conventional CuAAC and Cu-free azide-alkyne (3 + 2)cycloadditions (SPAAC), with ynamine-based examples being faster in all cases. The reaction optimization platform established in this study provides the basis for its wider utility to prepare CuAAC-based bioconjugates with lower Cu loadings while maintaining fast reaction kinetics.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive Review on Bubbles: Synthesis, Modification, Characterization and Biomedical Applications. 关于气泡的全面综述:气泡的合成、改性、表征和生物医学应用。
IF 4 2区 化学
Bioconjugate Chemistry Bioconjugate Pub Date : 2024-10-08 DOI: 10.1021/acs.bioconjchem.4c00137
Donald A Fernandes
{"title":"Comprehensive Review on Bubbles: Synthesis, Modification, Characterization and Biomedical Applications.","authors":"Donald A Fernandes","doi":"10.1021/acs.bioconjchem.4c00137","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00137","url":null,"abstract":"<p><p>Accurate detection, treatment, and imaging of diseases are important for effective treatment outcomes in patients. In this regard, bubbles have gained much attention, due to their versatility. Bubbles usually 1 nm to 10 μm in size can be produced and loaded with a variety of lipids, polymers, proteins, and therapeutic and imaging agents. This review details the different production and loading methods for bubbles, for imaging and treatment of diseases/conditions such as cancer, tumor angiogenesis, thrombosis, and inflammation. Bubbles can also be used for perfusion measurements, important for diagnostic and therapeutic decision making in cardiac disease. The different factors important in the stability of bubbles and the different techniques for characterizing their physical and chemical properties are explained, for developing bubbles with advanced therapeutic and imaging features. Hence, the review provides important insights for researchers studying bubbles for biomedical applications.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibitory Effects on RNA Binding and RNase H Induction Activity of Prodrug-Type Oligodeoxynucleotides Modified with a Galactosylated Self-Immolative Linker Cleavable by β-Galactosidase. 用可被β-半乳糖苷酶裂解的半乳糖化自消旋连接体修饰的原药型寡脱氧核苷酸对 RNA 结合和 RNase H 诱导活性的抑制作用
IF 4 2区 化学
Bioconjugate Chemistry Bioconjugate Pub Date : 2024-10-08 DOI: 10.1021/acs.bioconjchem.4c00376
Kento Miyaji, Yoshiaki Masaki, Kohji Seio
{"title":"Inhibitory Effects on RNA Binding and RNase H Induction Activity of Prodrug-Type Oligodeoxynucleotides Modified with a Galactosylated Self-Immolative Linker Cleavable by β-Galactosidase.","authors":"Kento Miyaji, Yoshiaki Masaki, Kohji Seio","doi":"10.1021/acs.bioconjchem.4c00376","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00376","url":null,"abstract":"<p><p>Prodrug-type oligonucleotides (prodrug-ONs) are a class of oligonucleotide designed for activation under specific intracellular conditions or external stimuli. Prodrug-ONs can be activated in the target tissues or cells, thereby reducing the risk of adverse effects. In this study, we synthesized prodrug-type oligodeoxynucleotides activated by β-galactosidase, an enzyme that is overexpressed in cancer and senescent cells. These oligodeoxynucleotides (ODNs) contain a modified thymidine conjugated with galactose via a self-immolative linker at the <i>O</i>4-position. UV-melting analysis revealed that the modifications decreased the melting temperature (<i>T</i><sub>m</sub>) compared with that of the unmodified ODN when hybridized with complementary RNA. Furthermore, cleavage of the glycosidic bond by β-galactosidase resulted in the spontaneous removal of the linker from the nucleobase moiety, generating unmodified ODNs. Additionally, the introduction of multiple modified thymidines into ODNs completely inhibited the RNase H-mediated cleavage of complementary RNA. These findings suggest the possibility of developing prodrug-ONs, which are specifically activated in cancer cells or senescent cells with high β-galactosidase expression.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug Delivery Targeting Neuroinflammation to Treat Brain Diseases. 针对神经炎症的药物输送治疗脑部疾病。
IF 4 2区 化学
Bioconjugate Chemistry Bioconjugate Pub Date : 2024-10-08 DOI: 10.1021/acs.bioconjchem.4c00414
Juntao Wang, Ruiqin Jia, Wubo Wan, Haijun Han, Guoying Wang, Zhen Li, Jia Li
{"title":"Drug Delivery Targeting Neuroinflammation to Treat Brain Diseases.","authors":"Juntao Wang, Ruiqin Jia, Wubo Wan, Haijun Han, Guoying Wang, Zhen Li, Jia Li","doi":"10.1021/acs.bioconjchem.4c00414","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00414","url":null,"abstract":"<p><p>Inflammation within the brain is a hallmark of a wide range of brain diseases. The complex role of inflammatory processes in these conditions suggests that neuroinflammation could be a valuable therapeutic target. While several promising anti-inflammatory agents have been identified, their clinical application in brain diseases is often hampered by the inability to cross the blood-brain barrier (BBB) and reach therapeutically effective concentrations at the pathological sites. This limitation highlights the urgent need for effective BBB-penetrating drug delivery systems designed to target brain inflammation. This review critically examines the recent advances over the past five years in drug delivery strategies aimed at mitigating brain inflammation in Alzheimer's disease and ischemic stroke─two of the leading causes of death and disability worldwide. Additionally, we address the key challenges in this field, offering insights into future directions for targeting neuroinflammation in the treatment of brain diseases.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Bifunctional Chelating Agent for Tyrosine-Specific Radiolabeling of Peptides and Proteins. 用于肽和蛋白质酪氨酸特异性放射性标记的新型双功能螯合剂
IF 4 2区 化学
Bioconjugate Chemistry Bioconjugate Pub Date : 2024-10-07 DOI: 10.1021/acs.bioconjchem.4c00363
Daiki Nakano, Hiroyuki Watanabe, Saito Kosuke, Masahiro Ono
{"title":"A Novel Bifunctional Chelating Agent for Tyrosine-Specific Radiolabeling of Peptides and Proteins.","authors":"Daiki Nakano, Hiroyuki Watanabe, Saito Kosuke, Masahiro Ono","doi":"10.1021/acs.bioconjchem.4c00363","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00363","url":null,"abstract":"<p><p>Site-specific radiolabeling is utilized for the development of antibody- or peptide-based radiotheranostic agents. Although tyrosine can be exploited as one of the target residues for site-specific radiolabeling of peptides and proteins, a tyrosine-specific radiolabeling method has not been established. In this study, we newly designed and synthesized a novel bifunctional chelating agent, TBD-DO3A, consisting of a triazabutadiene (TBD) scaffold and metal chelator, 1,4,7,10-tetraazacyclododecane 1,4,7-triacetic acid (DO3A). Conjugation of TBD-DO3A with Ac-Tyr-NHMe followed by <sup>111</sup>In-labeling afforded [<sup>111</sup>In]In-Tyr-DO3A, which showed high-level stability in mouse plasma. Then, we selected the tyrosine-containing cyclic peptide c(RGDyK) as a model ligand and synthesized [<sup>111</sup>In]In-RYD. [<sup>111/nat</sup>In]In-RYD showed <i>in vitro</i> binding properties for integrin α<sub>v</sub>β<sub>3</sub> equivalent to those of [<sup>111/nat</sup>In]In-RKD, a lysine residue-labeled control compound. In <i>in vivo</i> biodistribution and SPECT/CT imaging studies using U87MG/PC-3 tumor-bearing mice, [<sup>111</sup>In]In-RYD and [<sup>111</sup>In]In-RKD were selectively accumulated and facilitated U87MG tumor visualization at 24 h postinjection. These results indicate that TBD-DO3A has fundamental properties as a bifunctional chelator for tyrosine-specific radiolabeling of peptides and proteins.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a Novel Transasparaginase Activity of Bacillus subtilis (bTG) for Sequence-Specific Bioconjugation. 鉴定枯草芽孢杆菌(bTG)的新型转天冬酰胺酶活性,用于序列特异性生物连接。
IF 4 2区 化学
Bioconjugate Chemistry Bioconjugate Pub Date : 2024-10-03 DOI: 10.1021/acs.bioconjchem.4c00306
Marie Flamme, Raphael Göhring, Denise Zamarbide, Corentin Bon, Alexandra Vissières, Anne Basler, Daniela Miranda, Rainer Kneuer, Greg Mann
{"title":"Identification of a Novel Transasparaginase Activity of <i>Bacillus subtilis</i> (bTG) for Sequence-Specific Bioconjugation.","authors":"Marie Flamme, Raphael Göhring, Denise Zamarbide, Corentin Bon, Alexandra Vissières, Anne Basler, Daniela Miranda, Rainer Kneuer, Greg Mann","doi":"10.1021/acs.bioconjchem.4c00306","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00306","url":null,"abstract":"<p><p>The ability of <i>Bacillus subtilis</i> transglutaminase (bTG) to functionalize BSA has been investigated using peptide mapping experiments. Interestingly, the conjugation was not detected on a glutamine but on an asparagine residue. A sequence determination study was further performed, and a sequence of 10 amino acids for site-specific conjugation was identified. A monobody showing no native reactivity with the bTG enzyme was produced with the identified peptide sequences and successfully conjugated to various types of substrates in very high yields (>90%) with a 1/1/1.5 ratio of protein/amine/enzyme. Direct conjugation to the amino linker of a small interfering RNA (siRNA) was achieved in good yield, and no impact on the siRNA activity was observed following the conjugation. The identified sequences were further engineered in VHH and IgG scaffolds, and successful conjugation could also be observed with both small molecules and siRNA, confirming the potential of bTG for site-specific enzymatic bioconjugation.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linker and Conjugation Site Synergy in Antibody-Drug Conjugates: Impacts on Biological Activity. 抗体-药物共轭物中连接体和共轭位点的协同作用:对生物活性的影响。
IF 4 2区 化学
Bioconjugate Chemistry Bioconjugate Pub Date : 2024-10-03 DOI: 10.1021/acs.bioconjchem.4c00348
Michihiko Aoyama, Minoru Tada, Hidetomo Yokoo, Takahito Ito, Takashi Misawa, Yosuke Demizu, Akiko Ishii-Watabe
{"title":"Linker and Conjugation Site Synergy in Antibody-Drug Conjugates: Impacts on Biological Activity.","authors":"Michihiko Aoyama, Minoru Tada, Hidetomo Yokoo, Takahito Ito, Takashi Misawa, Yosuke Demizu, Akiko Ishii-Watabe","doi":"10.1021/acs.bioconjchem.4c00348","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00348","url":null,"abstract":"<p><p>Antibody-drug conjugates (ADCs) produced using general conjugation methods yield heterogeneous products containing mixtures of species with different numbers of payloads per antibody (drug-antibody ratios) conjugated at multiple sites. This heterogeneity affects the stability, efficacy, and safety of ADCs. Thus, various site-specific conjugation methods have been developed to achieve homogeneity in ADCs. It was reported that linker structures and conjugation sites generally affected the characteristics of site-specific ADCs such as stability, efficacy, and safety. However, the combined effects of conjugation sites and linker structures on the physicochemical and biological characteristics of site-specific ADCs have remained unclear. In this study, we generated 30 homogeneous site-specific ADCs with a combination of six conjugation sites and five linker structures using THIOMAB technology and evaluated the characteristics of these homogeneous ADCs. We found that both conjugation sites and linker structures affected characteristics unique to ADCs (linker stability as well as target-dependent and target-independent cytotoxicity) in site-specific ADCs. Especially, conjugation to the constant regions of the light chain and the presence of polyethylene glycol structures in the linker are important for those ADC-specific characteristics. Interestingly, we also found that the effects of linker structures on the target-independent cytotoxicity of homogeneous ADCs at certain conjugation sites differed from those seen in conventional heterogeneous ADCs. Our results suggest that optimizing linker structures based on the conjugation site may be necessary for site-specific ADCs.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equimolar Cross-Coupling Using Reactive Coiled Coils for Covalent Protein Assemblies. 利用反应性线圈实现共价蛋白质组装的等摩尔交叉耦合。
IF 4 2区 化学
Bioconjugate Chemistry Bioconjugate Pub Date : 2024-10-03 DOI: 10.1021/acs.bioconjchem.4c00327
Hironori Takeuchi, Elee Shimshoni, Satish Gandhesiri, Andrei Loas, Bradley L Pentelute
{"title":"Equimolar Cross-Coupling Using Reactive Coiled Coils for Covalent Protein Assemblies.","authors":"Hironori Takeuchi, Elee Shimshoni, Satish Gandhesiri, Andrei Loas, Bradley L Pentelute","doi":"10.1021/acs.bioconjchem.4c00327","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00327","url":null,"abstract":"<p><p>Biocompatible cross-coupling reactions enable the efficient covalent attachment of large biomolecules at near-stoichiometric ratios, ensuring the stability and integrity of the resulting products. We present an affinity-based peptide platform utilizing coiled coils containing reactive side chains for proximity-driven protein cross-coupling in the presence of a cross-linking agent. This platform supports both chemical synthesis and recombinant expression, using canonical amino acids to generate reactive affinity tags. Employing the E3/R3 coiled coil pair as a scaffold, we design four complementary coils with cysteine residues as cross-linking sites, achieving >90% conversion to covalent heterodimeric coupling products using 3,4-dibromomaleimide. Equimolar mixtures of proteins with reactive coils at their termini yield near-quantitative heterodimeric cross-coupling products. The strategic selection of complementary coiled coil pairs and cross-linking agents enables orthogonal assembly of macromolecules with diverse architectures. This method offers a versatile approach for creating covalent fusion proteins, enhancing their stability and functionality for applications in chemical biology, biotechnology, and medicine.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poly(malic acid) Nanoconjugates of Pyrazinoic Acid for Lung Delivery in the Treatment of Tuberculosis. 聚(苹果酸)吡嗪酸纳米共轭物用于肺部给药治疗结核病。
IF 4 2区 化学
Bioconjugate Chemistry Bioconjugate Pub Date : 2024-09-27 DOI: 10.1021/acs.bioconjchem.4c00335
Thi Hong Van Nguyen, Nicolas Tsapis, Lynda Benrabah, Boris Gouilleux, Jean-Pierre Baltaze, Séverine Domenichini, Elias Fattal, Laurence Moine
{"title":"Poly(malic acid) Nanoconjugates of Pyrazinoic Acid for Lung Delivery in the Treatment of Tuberculosis.","authors":"Thi Hong Van Nguyen, Nicolas Tsapis, Lynda Benrabah, Boris Gouilleux, Jean-Pierre Baltaze, Séverine Domenichini, Elias Fattal, Laurence Moine","doi":"10.1021/acs.bioconjchem.4c00335","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00335","url":null,"abstract":"<p><p>Tuberculosis (TB) remains a major global infection, and TB treatments could be improved by site-specific targeting with delivery systems that allow tissue and cell uptake. To increase the drug concentration at the target sites following lung delivery, polymeric nanoconjugates based on biodegradable poly(malic acid) were designed. Pyrazinoic acid (POA), the active moiety of pyrazinamide─a first-line antituberculosis drug─was covalently bound to poly(malic acid) using a hydrophobic linker at mole ratios of 25%, 50%, and 75%. Three linkers, hexanediol, octanediol, and decanediol, were considered. Independently of the linker or ratio, all the conjugates were able to self-assemble, forming nanoconjugates (NCs) in water with 130-190 nm in diameter. Pyrazinoic acid could be released in a controlled manner without any burst release effect. Its kinetics can be adjusted by modifying the grafting ratio and linker length. No cytotoxicity was observed on RAW 264.7 macrophages up to ∼14 μg/mL of POA. In addition, the nanoconjugates were efficiently taken up by these cells over 5 h. Thanks to their high loading capacity and modulable release profiles, these nanoconjugates hold great promise for more effective treatment of tuberculosis.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142337317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tyrosinase-Mediated Conjugation for Antigen Display on Ferritin Nanoparticles. 酪氨酸酶介导的铁蛋白纳米颗粒上的抗原显示。
IF 4 2区 化学
Bioconjugate Chemistry Bioconjugate Pub Date : 2024-09-27 DOI: 10.1021/acs.bioconjchem.4c00387
Margarida Q Rodrigues, Sara Patão, Mónica Thomaz, Tiago Nunes, Paula M Alves, António Roldão
{"title":"Tyrosinase-Mediated Conjugation for Antigen Display on Ferritin Nanoparticles.","authors":"Margarida Q Rodrigues, Sara Patão, Mónica Thomaz, Tiago Nunes, Paula M Alves, António Roldão","doi":"10.1021/acs.bioconjchem.4c00387","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00387","url":null,"abstract":"<p><p>Ferritin (Ft) nanoparticles have become versatile platforms for displaying antigens, being a promising technology for vaccine development. While genetic fusion has traditionally been the preferred method for antigen display, concerns about improper folding and steric hindrance that may compromise vaccine efficacy or stability have prompted alternative approaches. Bioconjugation offers the advantage of preserving native protein structure and function, with recent advancements improving efficiency and specificity. In this study, we used tyrosinase (TYR) to bioconjugate the receptor binding domain of the SARS-CoV-2 spike protein, tagged with a tyrosine (RBD-Y), to native cysteines on Ft, resulting in RBD-Y-Ft nanoparticles. We quantified available cysteines on ferritin using Ellman's assay and monitored their reduction during the reactions. Denaturing analytics (via SDS-PAGE, Western blot, and LC-TOF-MS) confirmed the formation of RBD-Y-Ft monomers with an expected molecular weight of 46 kDa. Mass photometry and HPLC estimated a molecular weight of RBD-Y-Ft nanoparticles of 680 kDa, which was higher than that of nonfunctionalized ferritin (480 kDa), indicating successful binding of up to eight RBD-Y antigens per 24-mer Ft nanoparticle. This work enhances our understanding of how Ft nanoparticles can be engineered to present antigens, leveraging them as a robust scaffold for producing tailored-made candidate vaccines in a timely manner.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142337320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信