Kaiyuan Guo, Dinglingge Cao, Lucia P Marchese-Thomas, Yizhou Dong
{"title":"受体介导的跨血脑屏障胞吞作用的抗体工程。","authors":"Kaiyuan Guo, Dinglingge Cao, Lucia P Marchese-Thomas, Yizhou Dong","doi":"10.1021/acs.bioconjchem.5c00379","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient delivery of therapeutic antibodies into the central nervous system (CNS) remains severely limited by the restrictive nature of the blood-brain barrier (BBB). Receptor-mediated transcytosis (RMT) has emerged as a promising strategy to enhance antibody transport across the BBB. In this Viewpoint, we highlight recent advances in RMT-based antibody delivery, focusing specifically on three representative BBB receptors: transferrin receptor (TfR), insulin receptor (InsR), and neonatal Fc receptor (FcRn). By comparing antibody engineering strategies that target these receptors, we summarize current progress, discuss critical limitations, and suggest directions for advancing CNS-targeted therapeutic antibodies. This Viewpoint provides valuable insights for selecting appropriate RMT targets and optimizing antibody-based therapies for CNS diseases.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibody Engineering for Receptor-Mediated Transcytosis Across the Blood-Brain Barrier.\",\"authors\":\"Kaiyuan Guo, Dinglingge Cao, Lucia P Marchese-Thomas, Yizhou Dong\",\"doi\":\"10.1021/acs.bioconjchem.5c00379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efficient delivery of therapeutic antibodies into the central nervous system (CNS) remains severely limited by the restrictive nature of the blood-brain barrier (BBB). Receptor-mediated transcytosis (RMT) has emerged as a promising strategy to enhance antibody transport across the BBB. In this Viewpoint, we highlight recent advances in RMT-based antibody delivery, focusing specifically on three representative BBB receptors: transferrin receptor (TfR), insulin receptor (InsR), and neonatal Fc receptor (FcRn). By comparing antibody engineering strategies that target these receptors, we summarize current progress, discuss critical limitations, and suggest directions for advancing CNS-targeted therapeutic antibodies. This Viewpoint provides valuable insights for selecting appropriate RMT targets and optimizing antibody-based therapies for CNS diseases.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.bioconjchem.5c00379\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.5c00379","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Antibody Engineering for Receptor-Mediated Transcytosis Across the Blood-Brain Barrier.
Efficient delivery of therapeutic antibodies into the central nervous system (CNS) remains severely limited by the restrictive nature of the blood-brain barrier (BBB). Receptor-mediated transcytosis (RMT) has emerged as a promising strategy to enhance antibody transport across the BBB. In this Viewpoint, we highlight recent advances in RMT-based antibody delivery, focusing specifically on three representative BBB receptors: transferrin receptor (TfR), insulin receptor (InsR), and neonatal Fc receptor (FcRn). By comparing antibody engineering strategies that target these receptors, we summarize current progress, discuss critical limitations, and suggest directions for advancing CNS-targeted therapeutic antibodies. This Viewpoint provides valuable insights for selecting appropriate RMT targets and optimizing antibody-based therapies for CNS diseases.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.