Rui Du, Zhengshuo Wang, Zhipeng Zhao, Huilong Liu, Shouchang Jiao, Yi Wu, Wenhui Li, Hua Yuan, Hanlin Ou and Dan Ding
{"title":"基于咔唑掺杂光固化树脂的高精度和超长寿命的多色3D余辉结构","authors":"Rui Du, Zhengshuo Wang, Zhipeng Zhao, Huilong Liu, Shouchang Jiao, Yi Wu, Wenhui Li, Hua Yuan, Hanlin Ou and Dan Ding","doi":"10.1039/D5QM00369E","DOIUrl":null,"url":null,"abstract":"<p >The majority of current research on organic room-temperature phosphorescence (RTP) materials focuses on film or powder forms, with limited exploration into the fabrication of complex 3D structures with high precision and enhanced RTP properties. Herein, a general strategy is proposed to construct 3D RTP models with precise structures and ultralong lifetimes by micro-doping carbazole-based chromophores into photocurable standard resins (SRs) and combining them with photocurable 3D printing technology. The highly cross-linked and rigid microenvironment formed after the curing of SRs endows the carbazole-doped SRs with a long RTP lifetime of up to 1.8 s. Utilizing digital light processing 3D printing technology, a series of multidimensional RTP models with precise structures and ultralong lifetimes are constructed based on these carbazole-doped SRs. Given the superior tunability of 3D printing blueprints and the excellent RTP properties of the printed models, these multidimensional models demonstrate great application prospects in advanced anti-counterfeiting and encryption applications.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 18","pages":" 2752-2762"},"PeriodicalIF":6.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicolor 3D afterglow structures with high precision and ultralong lifetimes based on carbazole-doped photocurable resins†\",\"authors\":\"Rui Du, Zhengshuo Wang, Zhipeng Zhao, Huilong Liu, Shouchang Jiao, Yi Wu, Wenhui Li, Hua Yuan, Hanlin Ou and Dan Ding\",\"doi\":\"10.1039/D5QM00369E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The majority of current research on organic room-temperature phosphorescence (RTP) materials focuses on film or powder forms, with limited exploration into the fabrication of complex 3D structures with high precision and enhanced RTP properties. Herein, a general strategy is proposed to construct 3D RTP models with precise structures and ultralong lifetimes by micro-doping carbazole-based chromophores into photocurable standard resins (SRs) and combining them with photocurable 3D printing technology. The highly cross-linked and rigid microenvironment formed after the curing of SRs endows the carbazole-doped SRs with a long RTP lifetime of up to 1.8 s. Utilizing digital light processing 3D printing technology, a series of multidimensional RTP models with precise structures and ultralong lifetimes are constructed based on these carbazole-doped SRs. Given the superior tunability of 3D printing blueprints and the excellent RTP properties of the printed models, these multidimensional models demonstrate great application prospects in advanced anti-counterfeiting and encryption applications.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 18\",\"pages\":\" 2752-2762\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00369e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00369e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multicolor 3D afterglow structures with high precision and ultralong lifetimes based on carbazole-doped photocurable resins†
The majority of current research on organic room-temperature phosphorescence (RTP) materials focuses on film or powder forms, with limited exploration into the fabrication of complex 3D structures with high precision and enhanced RTP properties. Herein, a general strategy is proposed to construct 3D RTP models with precise structures and ultralong lifetimes by micro-doping carbazole-based chromophores into photocurable standard resins (SRs) and combining them with photocurable 3D printing technology. The highly cross-linked and rigid microenvironment formed after the curing of SRs endows the carbazole-doped SRs with a long RTP lifetime of up to 1.8 s. Utilizing digital light processing 3D printing technology, a series of multidimensional RTP models with precise structures and ultralong lifetimes are constructed based on these carbazole-doped SRs. Given the superior tunability of 3D printing blueprints and the excellent RTP properties of the printed models, these multidimensional models demonstrate great application prospects in advanced anti-counterfeiting and encryption applications.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.