Sn-doped mixed-halide Li6PS5Cl0.5Br0.5 argyrodite with enhanced chemical stability for all-solid-state batteries†

IF 6.4 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yoonjae Cho, Jung Hwan Song, Ji Eun Wang, Do Kyung Kim and Dong Jun Kim
{"title":"Sn-doped mixed-halide Li6PS5Cl0.5Br0.5 argyrodite with enhanced chemical stability for all-solid-state batteries†","authors":"Yoonjae Cho, Jung Hwan Song, Ji Eun Wang, Do Kyung Kim and Dong Jun Kim","doi":"10.1039/D5QM00394F","DOIUrl":null,"url":null,"abstract":"<p >The synthesis and characterization of Sn-doped Li<small><sub>6</sub></small>PS<small><sub>5</sub></small>Cl<small><sub>0.5</sub></small>Br<small><sub>0.5</sub></small> solid-state electrolytes are presented. By incorporating Cl and Br, the solubility of Sn dopants in the argyrodite framework is significantly improved without compromising the high ionic conductivity of material. Sn substitution for P enhances both the chemical robustness and interfacial stability of the electrolyte, addressing key challenges in electrolyte stability. The inclusion of Sn strengthens the structural integrity of Li<small><sub>6</sub></small>PS<small><sub>5</sub></small>Cl<small><sub>0.5</sub></small>Br<small><sub>0.5</sub></small>, mitigating atmospheric degradation. Electrochemical studies reveal that Sn doping markedly increases ionic conductivity and reduces the activation energy for Li-ion mobility, thereby improving battery performance. Structural analyses indicate that Sn incorporation expands the unit cell and facilitates the formation of a Li–Sn alloy at the electrolyte–electrode interface. This alloy formation promotes rapid Li-ion migration and stabilizes the interface, contributing to enhanced electrochemical stability. The findings underscore the synergistic benefits of halogen substitution and Sn doping, demonstrating their collective impact on the performance and durability of sulfide-based solid electrolytes.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 15","pages":" 2404-2416"},"PeriodicalIF":6.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d5qm00394f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00394f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis and characterization of Sn-doped Li6PS5Cl0.5Br0.5 solid-state electrolytes are presented. By incorporating Cl and Br, the solubility of Sn dopants in the argyrodite framework is significantly improved without compromising the high ionic conductivity of material. Sn substitution for P enhances both the chemical robustness and interfacial stability of the electrolyte, addressing key challenges in electrolyte stability. The inclusion of Sn strengthens the structural integrity of Li6PS5Cl0.5Br0.5, mitigating atmospheric degradation. Electrochemical studies reveal that Sn doping markedly increases ionic conductivity and reduces the activation energy for Li-ion mobility, thereby improving battery performance. Structural analyses indicate that Sn incorporation expands the unit cell and facilitates the formation of a Li–Sn alloy at the electrolyte–electrode interface. This alloy formation promotes rapid Li-ion migration and stabilizes the interface, contributing to enhanced electrochemical stability. The findings underscore the synergistic benefits of halogen substitution and Sn doping, demonstrating their collective impact on the performance and durability of sulfide-based solid electrolytes.

Abstract Image

增强全固态电池化学稳定性的掺锡混合卤化物Li6PS5Cl0.5Br0.5银晶石
介绍了掺锡Li6PS5Cl0.5Br0.5固态电解质的合成与表征。通过加入Cl和Br,锡掺杂剂在银柱石框架中的溶解度显著提高,同时又不影响材料的高离子电导率。锡取代P提高了电解质的化学稳健性和界面稳定性,解决了电解质稳定性的关键挑战。Sn的加入增强了Li6PS5Cl0.5Br0.5的结构完整性,减缓了大气降解。电化学研究表明,掺杂锡能显著提高离子电导率,降低锂离子迁移的活化能,从而改善电池性能。结构分析表明,锡的掺入扩大了单体电池,促进了锂-锡合金在电解质-电极界面的形成。这种合金的形成促进了锂离子的快速迁移,稳定了界面,有助于提高电化学稳定性。研究结果强调了卤素替代和锡掺杂的协同效益,证明了它们对硫化物基固体电解质的性能和耐用性的共同影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信