Ankur Sood, Soonmo Choi, Suhyeon Han, Sumanta Sahoo and Sung Soo Han
{"title":"Microwave-assisted ultrafast synthesis of an iron-based biomolecule-templated nanozyme with augmented peroxidase-mimetic activity†","authors":"Ankur Sood, Soonmo Choi, Suhyeon Han, Sumanta Sahoo and Sung Soo Han","doi":"10.1039/D5QM00285K","DOIUrl":null,"url":null,"abstract":"<p >Recently, the inadequacies of natural enzymes, such as high production cost, reduced stability, and strenuous preparation methods, have been addressed by fabricating artificial nanozymes with exceptional stability, availability, and low production cost. Herein, a rapid, cost-effective, facile, and one-pot microwave-assisted synthesis was used to fabricate hemin/graphene nanocomposites (GF) as a nanozyme with peroxidase mimetic activity. During the process, hemin acted as the iron source to synthesize iron oxide nanoparticles (∼50 nm) uniformly decorated on the surface of reduced graphene oxide (rGO). Compared with rGO alone, the fabricated GF demonstrated an augmented capability to catalyse the reaction of colourless pyrogallol (Py) to its deep yellow oxidized product in the presence of hydrogen peroxide (H<small><sub>2</sub></small>O<small><sub>2</sub></small>). The focused synthetic approach resulted in high catalytic efficiency of the fabricated nanozyme in decomposing hydrogen peroxide with a ratio of 2 : 1 (graphene : hemin). The formed nanozymes were superparamagnetic with a magnetic moment (<em>M</em><small><sub>s</sub></small>) of ∼10.8 emu g<small><sup>−1</sup></small>. Additionally, the biocompatibility of the nanozyme was assessed on NIH3T3 skin fibroblast cells, where no cytotoxicity was witnessed, showing potential for the utility of the developed nanozyme for biomedical applications. This work implies an innovative approach to synthesizing enzyme-mimetic nanozymes using <em>in situ</em> microwave-assisted fabrication with applications in biomedicine, biocatalysis, and biosensing.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 14","pages":" 2213-2223"},"PeriodicalIF":6.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00285k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the inadequacies of natural enzymes, such as high production cost, reduced stability, and strenuous preparation methods, have been addressed by fabricating artificial nanozymes with exceptional stability, availability, and low production cost. Herein, a rapid, cost-effective, facile, and one-pot microwave-assisted synthesis was used to fabricate hemin/graphene nanocomposites (GF) as a nanozyme with peroxidase mimetic activity. During the process, hemin acted as the iron source to synthesize iron oxide nanoparticles (∼50 nm) uniformly decorated on the surface of reduced graphene oxide (rGO). Compared with rGO alone, the fabricated GF demonstrated an augmented capability to catalyse the reaction of colourless pyrogallol (Py) to its deep yellow oxidized product in the presence of hydrogen peroxide (H2O2). The focused synthetic approach resulted in high catalytic efficiency of the fabricated nanozyme in decomposing hydrogen peroxide with a ratio of 2 : 1 (graphene : hemin). The formed nanozymes were superparamagnetic with a magnetic moment (Ms) of ∼10.8 emu g−1. Additionally, the biocompatibility of the nanozyme was assessed on NIH3T3 skin fibroblast cells, where no cytotoxicity was witnessed, showing potential for the utility of the developed nanozyme for biomedical applications. This work implies an innovative approach to synthesizing enzyme-mimetic nanozymes using in situ microwave-assisted fabrication with applications in biomedicine, biocatalysis, and biosensing.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.