基于NRTC实验的非道路柴油机瞬态NOx、PN和THC排放预测迁移学习

IF 3.9 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL
Wen Zeng, Haiyi Wang, Feng Zhou, Jianqin Fu, Tao Wen, Kainan Yuan, Xiongbo Duan
{"title":"基于NRTC实验的非道路柴油机瞬态NOx、PN和THC排放预测迁移学习","authors":"Wen Zeng, Haiyi Wang, Feng Zhou, Jianqin Fu, Tao Wen, Kainan Yuan, Xiongbo Duan","doi":"10.1039/d5em00321k","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a novel task transfer learning framework for predicting transient emissions (NOx, PN, and THC) in non-road diesel engines. Our key innovation lies in eliminating model re-optimization through a fixed-architecture approach where pretrained hyperparameters are preserved and only task-specific layers are fine-tuned. Validated on NRTC data across all emission transfer scenarios, the method achieves near-identical accuracy to pretrained models (<i>R</i><sup>2</sup> difference ≤0.0044), peak <i>R</i><sup>2</sup> values of 98.87% (NOx), 99.54% (PN), and 99.52% (THC) and computational cost reduction by 72% <i>versus</i> conventional methods. The framework surpasses operational vehicle sensor accuracy and matches laboratory-grade equipment precision. Analysis confirms the efficacy of transfer learning for emission prediction and establishes an efficient pre-trained model organization paradigm.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer learning for transient NOx, PN and THC emission prediction of non-road diesel engines based on NRTC experiments.\",\"authors\":\"Wen Zeng, Haiyi Wang, Feng Zhou, Jianqin Fu, Tao Wen, Kainan Yuan, Xiongbo Duan\",\"doi\":\"10.1039/d5em00321k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces a novel task transfer learning framework for predicting transient emissions (NOx, PN, and THC) in non-road diesel engines. Our key innovation lies in eliminating model re-optimization through a fixed-architecture approach where pretrained hyperparameters are preserved and only task-specific layers are fine-tuned. Validated on NRTC data across all emission transfer scenarios, the method achieves near-identical accuracy to pretrained models (<i>R</i><sup>2</sup> difference ≤0.0044), peak <i>R</i><sup>2</sup> values of 98.87% (NOx), 99.54% (PN), and 99.52% (THC) and computational cost reduction by 72% <i>versus</i> conventional methods. The framework surpasses operational vehicle sensor accuracy and matches laboratory-grade equipment precision. Analysis confirms the efficacy of transfer learning for emission prediction and establishes an efficient pre-trained model organization paradigm.</p>\",\"PeriodicalId\":74,\"journal\":{\"name\":\"Environmental Science: Processes & Impacts\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Processes & Impacts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1039/d5em00321k\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1039/d5em00321k","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究引入了一种新的任务迁移学习框架,用于预测非道路柴油发动机的瞬态排放(NOx, PN和THC)。我们的关键创新在于通过固定架构方法消除了模型重新优化,其中保留了预训练的超参数,并且仅对特定任务的层进行微调。在所有排放转移情景下的NRTC数据上验证,该方法与预训练模型的准确率接近(R2差≤0.0044),峰值R2值为98.87% (NOx), 99.54% (PN)和99.52% (THC),计算成本比传统方法降低72%。该框架超过了操作车辆传感器的精度,并匹配实验室级设备的精度。分析证实了迁移学习对排放预测的有效性,并建立了一个有效的预训练模型组织范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer learning for transient NOx, PN and THC emission prediction of non-road diesel engines based on NRTC experiments.

This study introduces a novel task transfer learning framework for predicting transient emissions (NOx, PN, and THC) in non-road diesel engines. Our key innovation lies in eliminating model re-optimization through a fixed-architecture approach where pretrained hyperparameters are preserved and only task-specific layers are fine-tuned. Validated on NRTC data across all emission transfer scenarios, the method achieves near-identical accuracy to pretrained models (R2 difference ≤0.0044), peak R2 values of 98.87% (NOx), 99.54% (PN), and 99.52% (THC) and computational cost reduction by 72% versus conventional methods. The framework surpasses operational vehicle sensor accuracy and matches laboratory-grade equipment precision. Analysis confirms the efficacy of transfer learning for emission prediction and establishes an efficient pre-trained model organization paradigm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信