电催化:从平面表面到纳米结构界面

IF 55.8 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alasdair R. Fairhurst, Joshua Snyder, Chao Wang, Dusan Strmcnik and Vojislav R. Stamenkovic*, 
{"title":"电催化:从平面表面到纳米结构界面","authors":"Alasdair R. Fairhurst,&nbsp;Joshua Snyder,&nbsp;Chao Wang,&nbsp;Dusan Strmcnik and Vojislav R. Stamenkovic*,&nbsp;","doi":"10.1021/acs.chemrev.4c0013310.1021/acs.chemrev.4c00133","DOIUrl":null,"url":null,"abstract":"<p >The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface–adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena. To make significant strides in materials design, a structured approach based on well-defined surfaces is necessary to selectively control distinct parameters, while complexity is added sequentially through careful application of nanostructured surfaces. In this review, we cover advances made through this approach for key elements in the field, beginning with the simplest hydrogen oxidation and evolution reactions and concluding with more complex organic molecules. In each case, we offer a unique perspective on the contribution of well-defined systems to our understanding of electrochemical energy conversion technologies and how wider deployment can aid intelligent materials design.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"125 3","pages":"1332–1419 1332–1419"},"PeriodicalIF":55.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemrev.4c00133","citationCount":"0","resultStr":"{\"title\":\"Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces\",\"authors\":\"Alasdair R. Fairhurst,&nbsp;Joshua Snyder,&nbsp;Chao Wang,&nbsp;Dusan Strmcnik and Vojislav R. Stamenkovic*,&nbsp;\",\"doi\":\"10.1021/acs.chemrev.4c0013310.1021/acs.chemrev.4c00133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface–adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena. To make significant strides in materials design, a structured approach based on well-defined surfaces is necessary to selectively control distinct parameters, while complexity is added sequentially through careful application of nanostructured surfaces. In this review, we cover advances made through this approach for key elements in the field, beginning with the simplest hydrogen oxidation and evolution reactions and concluding with more complex organic molecules. In each case, we offer a unique perspective on the contribution of well-defined systems to our understanding of electrochemical energy conversion technologies and how wider deployment can aid intelligent materials design.</p>\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":\"125 3\",\"pages\":\"1332–1419 1332–1419\"},\"PeriodicalIF\":55.8000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.chemrev.4c00133\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemrev.4c00133\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrev.4c00133","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

能量转换的关键反应集中在氢、氧、碳和组成电化学能量转换系统的多相催化剂表面的化学反应上。表面-吸附质的相互作用共同构成了电化学界面,并定义了许多清洁能源技术的反应动力学。实际设备引入了高水平的复杂性,其中表面粗糙度、结构、组成和形态与电解质、pH值、扩散和系统级限制相结合,挑战了我们对潜在现象进行反卷积的能力。为了在材料设计方面取得重大进展,有必要采用基于定义良好的表面的结构化方法来选择性地控制不同的参数,同时通过仔细应用纳米结构表面来增加复杂性。在这篇综述中,我们介绍了通过这种方法在该领域的关键元素上取得的进展,从最简单的氢氧化和进化反应开始,到更复杂的有机分子。在每种情况下,我们都提供了一个独特的视角,说明定义良好的系统对我们理解电化学能量转换技术的贡献,以及更广泛的部署如何帮助智能材料设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces

The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface–adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena. To make significant strides in materials design, a structured approach based on well-defined surfaces is necessary to selectively control distinct parameters, while complexity is added sequentially through careful application of nanostructured surfaces. In this review, we cover advances made through this approach for key elements in the field, beginning with the simplest hydrogen oxidation and evolution reactions and concluding with more complex organic molecules. In each case, we offer a unique perspective on the contribution of well-defined systems to our understanding of electrochemical energy conversion technologies and how wider deployment can aid intelligent materials design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信