Chemical Reviews最新文献

筛选
英文 中文
Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces 电催化:从平面表面到纳米结构界面
IF 62.1 1区 化学
Chemical Reviews Pub Date : 2025-01-28 DOI: 10.1021/acs.chemrev.4c00133
Alasdair R. Fairhurst, Joshua Snyder, Chao Wang, Dusan Strmcnik, Vojislav R. Stamenkovic
{"title":"Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces","authors":"Alasdair R. Fairhurst, Joshua Snyder, Chao Wang, Dusan Strmcnik, Vojislav R. Stamenkovic","doi":"10.1021/acs.chemrev.4c00133","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00133","url":null,"abstract":"The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface–adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena. To make significant strides in materials design, a structured approach based on well-defined surfaces is necessary to selectively control distinct parameters, while complexity is added sequentially through careful application of nanostructured surfaces. In this review, we cover advances made through this approach for key elements in the field, beginning with the simplest hydrogen oxidation and evolution reactions and concluding with more complex organic molecules. In each case, we offer a unique perspective on the contribution of well-defined systems to our understanding of electrochemical energy conversion technologies and how wider deployment can aid intelligent materials design.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"36 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2025-01-28 DOI: 10.1021/acs.chemrev.4c0013310.1021/acs.chemrev.4c00133
Alasdair R. Fairhurst, Joshua Snyder, Chao Wang, Dusan Strmcnik and Vojislav R. Stamenkovic*, 
{"title":"Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces","authors":"Alasdair R. Fairhurst,&nbsp;Joshua Snyder,&nbsp;Chao Wang,&nbsp;Dusan Strmcnik and Vojislav R. Stamenkovic*,&nbsp;","doi":"10.1021/acs.chemrev.4c0013310.1021/acs.chemrev.4c00133","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00133https://doi.org/10.1021/acs.chemrev.4c00133","url":null,"abstract":"<p >The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface–adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena. To make significant strides in materials design, a structured approach based on well-defined surfaces is necessary to selectively control distinct parameters, while complexity is added sequentially through careful application of nanostructured surfaces. In this review, we cover advances made through this approach for key elements in the field, beginning with the simplest hydrogen oxidation and evolution reactions and concluding with more complex organic molecules. In each case, we offer a unique perspective on the contribution of well-defined systems to our understanding of electrochemical energy conversion technologies and how wider deployment can aid intelligent materials design.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"125 3","pages":"1332–1419 1332–1419"},"PeriodicalIF":51.4,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemrev.4c00133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143386061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy 合理设计用于工程级联催化癌症疗法的纳米酶
IF 62.1 1区 化学
Chemical Reviews Pub Date : 2025-01-27 DOI: 10.1021/acs.chemrev.4c00882
Xiuna Jia, Erkang Wang, Jin Wang
{"title":"Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy","authors":"Xiuna Jia, Erkang Wang, Jin Wang","doi":"10.1021/acs.chemrev.4c00882","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00882","url":null,"abstract":"Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) <i>in situ</i>, thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects. This area has shown remarkable progress. This Perspective provides a comprehensive overview of nanozymes, covering their classification and fundamentals. The regulation of nanozyme activity and efficient strategies of rational design are discussed in detail. Furthermore, representative paradigms for the successful construction of cascade catalytic systems for cancer treatment are summarized with a focus on revealing the underlying catalytic mechanisms. Finally, we address the current challenges and future prospects for the development of nanozyme-based cascade catalytic systems in biomedical applications.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"28 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2025-01-27 DOI: 10.1021/acs.chemrev.4c0088210.1021/acs.chemrev.4c00882
Xiuna Jia, Erkang Wang and Jin Wang*, 
{"title":"Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy","authors":"Xiuna Jia,&nbsp;Erkang Wang and Jin Wang*,&nbsp;","doi":"10.1021/acs.chemrev.4c0088210.1021/acs.chemrev.4c00882","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00882https://doi.org/10.1021/acs.chemrev.4c00882","url":null,"abstract":"<p >Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) <i>in situ</i>, thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects. This area has shown remarkable progress. This Perspective provides a comprehensive overview of nanozymes, covering their classification and fundamentals. The regulation of nanozyme activity and efficient strategies of rational design are discussed in detail. Furthermore, representative paradigms for the successful construction of cascade catalytic systems for cancer treatment are summarized with a focus on revealing the underlying catalytic mechanisms. Finally, we address the current challenges and future prospects for the development of nanozyme-based cascade catalytic systems in biomedical applications.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"125 5","pages":"2908–2952 2908–2952"},"PeriodicalIF":51.4,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143591333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond In Vivo, Pharmaceutical Molecule Production in Cell-Free Systems and the Use of Noncanonical Amino Acids Therein
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2025-01-22 DOI: 10.1021/acs.chemrev.4c0012610.1021/acs.chemrev.4c00126
Marco G. Casteleijn*, Ulrike Abendroth, Anne Zemella, Ruben Walter, Rashmi Rashmi, Rainer Haag and Stefan Kubick*, 
{"title":"Beyond In Vivo, Pharmaceutical Molecule Production in Cell-Free Systems and the Use of Noncanonical Amino Acids Therein","authors":"Marco G. Casteleijn*,&nbsp;Ulrike Abendroth,&nbsp;Anne Zemella,&nbsp;Ruben Walter,&nbsp;Rashmi Rashmi,&nbsp;Rainer Haag and Stefan Kubick*,&nbsp;","doi":"10.1021/acs.chemrev.4c0012610.1021/acs.chemrev.4c00126","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00126https://doi.org/10.1021/acs.chemrev.4c00126","url":null,"abstract":"<p >Throughout history, we have looked to nature to discover and copy pharmaceutical solutions to prevent and heal diseases. Due to the advances in metabolic engineering and the production of pharmaceutical proteins in different host cells, we have moved from mimicking nature to the delicate engineering of cells and proteins. We can now produce novel drug molecules, which are fusions of small chemical drugs and proteins. Currently we are at the brink of yet another step to venture beyond nature’s border with the use of unnatural amino acids and manufacturing without the use of living cells using cell-free systems. In this review, we summarize the progress and limitations of the last decades in the development of pharmaceutical protein development, production in cells, and cell-free systems. We also discuss possible future directions of the field.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"125 3","pages":"1303–1331 1303–1331"},"PeriodicalIF":51.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemrev.4c00126","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143386115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond In Vivo, Pharmaceutical Molecule Production in Cell-Free Systems and the Use of Noncanonical Amino Acids Therein 在体内之外,无细胞系统中的药物分子生产和其中非规范氨基酸的使用
IF 62.1 1区 化学
Chemical Reviews Pub Date : 2025-01-22 DOI: 10.1021/acs.chemrev.4c00126
Marco G. Casteleijn, Ulrike Abendroth, Anne Zemella, Ruben Walter, Rashmi Rashmi, Rainer Haag, Stefan Kubick
{"title":"Beyond In Vivo, Pharmaceutical Molecule Production in Cell-Free Systems and the Use of Noncanonical Amino Acids Therein","authors":"Marco G. Casteleijn, Ulrike Abendroth, Anne Zemella, Ruben Walter, Rashmi Rashmi, Rainer Haag, Stefan Kubick","doi":"10.1021/acs.chemrev.4c00126","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00126","url":null,"abstract":"Throughout history, we have looked to nature to discover and copy pharmaceutical solutions to prevent and heal diseases. Due to the advances in metabolic engineering and the production of pharmaceutical proteins in different host cells, we have moved from mimicking nature to the delicate engineering of cells and proteins. We can now produce novel drug molecules, which are fusions of small chemical drugs and proteins. Currently we are at the brink of yet another step to venture beyond nature’s border with the use of unnatural amino acids and manufacturing without the use of living cells using cell-free systems. In this review, we summarize the progress and limitations of the last decades in the development of pharmaceutical protein development, production in cells, and cell-free systems. We also discuss possible future directions of the field.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"20 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein-Based Degraders: From Chemical Biology Tools to Neo-Therapeutics
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2025-01-17 DOI: 10.1021/acs.chemrev.4c0059510.1021/acs.chemrev.4c00595
Lisha Ou, Mekedlawit T. Setegne, Jeandele Elliot, Fangfang Shen and Laura M. K. Dassama*, 
{"title":"Protein-Based Degraders: From Chemical Biology Tools to Neo-Therapeutics","authors":"Lisha Ou,&nbsp;Mekedlawit T. Setegne,&nbsp;Jeandele Elliot,&nbsp;Fangfang Shen and Laura M. K. Dassama*,&nbsp;","doi":"10.1021/acs.chemrev.4c0059510.1021/acs.chemrev.4c00595","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00595https://doi.org/10.1021/acs.chemrev.4c00595","url":null,"abstract":"<p >The nascent field of targeted protein degradation (TPD) could revolutionize biomedicine due to the ability of degrader molecules to selectively modulate disease-relevant proteins. A key limitation to the broad application of TPD is its dependence on small-molecule ligands to target proteins of interest. This leaves unstructured proteins or those lacking defined cavities for small-molecule binding out of the scope of many TPD technologies. The use of proteins, peptides, and nucleic acids (otherwise known as “biologics”) as the protein-targeting moieties in degraders addresses this limitation. In the following sections, we provide a comprehensive and critical review of studies that have used proteins and peptides to mediate the degradation and hence the functional control of otherwise challenging disease-relevant protein targets. We describe existing platforms for protein/peptide-based ligand identification and the drug delivery systems that might be exploited for the delivery of biologic-based degraders. Throughout the Review, we underscore the successes, challenges, and opportunities of using protein-based degraders as chemical biology tools to spur discoveries, elucidate mechanisms, and act as a new therapeutic modality.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"125 4","pages":"2120–2183 2120–2183"},"PeriodicalIF":51.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143486761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein-Based Degraders: From Chemical Biology Tools to Neo-Therapeutics 基于蛋白质的降解剂:从化学生物学工具到新疗法
IF 62.1 1区 化学
Chemical Reviews Pub Date : 2025-01-17 DOI: 10.1021/acs.chemrev.4c00595
Lisha Ou, Mekedlawit T. Setegne, Jeandele Elliot, Fangfang Shen, Laura M. K. Dassama
{"title":"Protein-Based Degraders: From Chemical Biology Tools to Neo-Therapeutics","authors":"Lisha Ou, Mekedlawit T. Setegne, Jeandele Elliot, Fangfang Shen, Laura M. K. Dassama","doi":"10.1021/acs.chemrev.4c00595","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00595","url":null,"abstract":"The nascent field of targeted protein degradation (TPD) could revolutionize biomedicine due to the ability of degrader molecules to selectively modulate disease-relevant proteins. A key limitation to the broad application of TPD is its dependence on small-molecule ligands to target proteins of interest. This leaves unstructured proteins or those lacking defined cavities for small-molecule binding out of the scope of many TPD technologies. The use of proteins, peptides, and nucleic acids (otherwise known as “biologics”) as the protein-targeting moieties in degraders addresses this limitation. In the following sections, we provide a comprehensive and critical review of studies that have used proteins and peptides to mediate the degradation and hence the functional control of otherwise challenging disease-relevant protein targets. We describe existing platforms for protein/peptide-based ligand identification and the drug delivery systems that might be exploited for the delivery of biologic-based degraders. Throughout the Review, we underscore the successes, challenges, and opportunities of using protein-based degraders as chemical biology tools to spur discoveries, elucidate mechanisms, and act as a new therapeutic modality.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"6 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142988374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrolysis, Ligand Exchange, and Redox Properties of Vanadium Compounds: Implications of Solution Transformation on Biological, Therapeutic, and Environmental Applications
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2025-01-16 DOI: 10.1021/acs.chemrev.4c0047510.1021/acs.chemrev.4c00475
Rupam Dinda*, Eugenio Garribba*, Daniele Sanna, Debbie C. Crans* and João Costa Pessoa*, 
{"title":"Hydrolysis, Ligand Exchange, and Redox Properties of Vanadium Compounds: Implications of Solution Transformation on Biological, Therapeutic, and Environmental Applications","authors":"Rupam Dinda*,&nbsp;Eugenio Garribba*,&nbsp;Daniele Sanna,&nbsp;Debbie C. Crans* and João Costa Pessoa*,&nbsp;","doi":"10.1021/acs.chemrev.4c0047510.1021/acs.chemrev.4c00475","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00475https://doi.org/10.1021/acs.chemrev.4c00475","url":null,"abstract":"<p >Vanadium is a transition metal with important industrial, technological, biological, and biomedical applications widespread in the environment and in living beings. The different reactions that vanadium compounds (VCs) undergo in the presence of proteins, nucleic acids, lipids and metabolites under mild physiological conditions are reviewed. In the environment vanadium is present naturally or through anthropogenic sources, the latter having an environmental impact caused by the dispersion of VCs in the atmosphere and aquifers. Vanadium has a versatile chemistry with interconvertible oxidation states, variable coordination number and geometry, and ability to form polyoxidovanadates with various nuclearity and structures. If a VC is added to a water-containing environment it can undergo hydrolysis, ligand-exchange, redox, and other types of changes, determined by the conditions and speciation chemistry of vanadium. Importantly, the solution is likely to differ from the VC introduced into the system and varies with concentration. Here, vanadium redox, hydrolytic and ligand-exchange chemical reactions, the influence of pH, concentration, salt, specific solutes, biomolecules, and VCs on the speciation are described. One of our goals with this work is highlight the need for assessment of the VC speciation, so that beneficial or toxic species might be identified and mechanisms of action be elucidated.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"125 3","pages":"1468–1603 1468–1603"},"PeriodicalIF":51.4,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143386167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrolysis, Ligand Exchange, and Redox Properties of Vanadium Compounds: Implications of Solution Transformation on Biological, Therapeutic, and Environmental Applications 钒化合物的水解、配体交换和氧化还原性质:溶液转化在生物、治疗和环境应用中的意义
IF 62.1 1区 化学
Chemical Reviews Pub Date : 2025-01-16 DOI: 10.1021/acs.chemrev.4c00475
Rupam Dinda, Eugenio Garribba, Daniele Sanna, Debbie C. Crans, João Costa Pessoa
{"title":"Hydrolysis, Ligand Exchange, and Redox Properties of Vanadium Compounds: Implications of Solution Transformation on Biological, Therapeutic, and Environmental Applications","authors":"Rupam Dinda, Eugenio Garribba, Daniele Sanna, Debbie C. Crans, João Costa Pessoa","doi":"10.1021/acs.chemrev.4c00475","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00475","url":null,"abstract":"Vanadium is a transition metal with important industrial, technological, biological, and biomedical applications widespread in the environment and in living beings. The different reactions that vanadium compounds (VCs) undergo in the presence of proteins, nucleic acids, lipids and metabolites under mild physiological conditions are reviewed. In the environment vanadium is present naturally or through anthropogenic sources, the latter having an environmental impact caused by the dispersion of VCs in the atmosphere and aquifers. Vanadium has a versatile chemistry with interconvertible oxidation states, variable coordination number and geometry, and ability to form polyoxidovanadates with various nuclearity and structures. If a VC is added to a water-containing environment it can undergo hydrolysis, ligand-exchange, redox, and other types of changes, determined by the conditions and speciation chemistry of vanadium. Importantly, the solution is likely to differ from the VC introduced into the system and varies with concentration. Here, vanadium redox, hydrolytic and ligand-exchange chemical reactions, the influence of pH, concentration, salt, specific solutes, biomolecules, and VCs on the speciation are described. One of our goals with this work is highlight the need for assessment of the VC speciation, so that beneficial or toxic species might be identified and mechanisms of action be elucidated.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"7 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142988375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信