Biosensors and Bioelectronics最新文献

筛选
英文 中文
μREACT: A microfluidic system for rapid evaluation of trans-kingdom interactions μREACT:用于快速评估跨王国相互作用的微流体系统。
IF 10.7 1区 生物学
Biosensors and Bioelectronics Pub Date : 2024-10-05 DOI: 10.1016/j.bios.2024.116838
{"title":"μREACT: A microfluidic system for rapid evaluation of trans-kingdom interactions","authors":"","doi":"10.1016/j.bios.2024.116838","DOIUrl":"10.1016/j.bios.2024.116838","url":null,"abstract":"<div><div>Trans-kingdom interactions between cells play pivotal roles in shaping intricate ecological and biological networks. However, our grasp of these interactions remains incomplete. Specifically, the vast phylogenetic spectrum of microorganisms capable of interacting with a given host cell type remains obscure, primarily due to the absence of efficient, high-throughput, single-cell resolution systems that can rapidly decipher these interactions. Here, we introduce μREACT (<strong><u>Micro</u></strong>fluidic system for <strong><u>R</u></strong>apid <strong><u>E</u></strong>valuation of bacterial <strong><u>A</u></strong>dherence and <strong><u>C</u></strong>ommunication in <strong><u>T</u></strong>rans-kingdom interactions), a microfluidic system designed to analyze interkingdom interactions. μREACT not only unveiled both recognized and previously unknown interactions but also enabled their detailed characterization. The system features the use of microfluidic dielectrophoretic separation of bacteria that adhere to host cells at single-cell (digital) resolution, and enabled the sorting of 10<sup>7</sup> adherent microorganisms per hour, representing a comparable throughput to conventional flow cytometry systems, but without requiring any labeling. The analysis of soil microbial samples using μREACT revealed several bacterial species previously known to have high adherence to mammalian host cells, as well as new interactions involving strains that displayed hallmarks of emerging endosymbiosis. Taken together, μREACT serves as a formidable tool for identifying and characterizing webs of interkingdom interactions. Its implications extend beyond discovery of such interactions, where it has the potential to provide new insights into fundamental mechanisms driving ecosystem dynamics and biological processes.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":null,"pages":null},"PeriodicalIF":10.7,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasensitive detection of cancer-associated nucleic acids and mutations by primer exchange reaction-based signal amplification and flow cytometry 通过引物交换反应信号扩增和流式细胞术超灵敏检测癌症相关核酸和突变。
IF 10.7 1区 生物学
Biosensors and Bioelectronics Pub Date : 2024-10-05 DOI: 10.1016/j.bios.2024.116839
{"title":"Ultrasensitive detection of cancer-associated nucleic acids and mutations by primer exchange reaction-based signal amplification and flow cytometry","authors":"","doi":"10.1016/j.bios.2024.116839","DOIUrl":"10.1016/j.bios.2024.116839","url":null,"abstract":"<div><div>The detection of cancer-associated nucleic acids and mutations through liquid biopsy has emerged as a highly promising non-invasive approach for early cancer detection and monitoring. In this study, we report the development of primer exchange reaction (PER) based signal amplification strategy that enables the rapid, sensitive and specific detection of nucleic acids bearing cancer specific single nucleotide mutations using flow cytometry. Using micrometer size beads as support for immobilizing oligonucleotides and programmable PER assembly for target oligonucleotide recognition and fluorescence signal amplification, we demonstrated the versatile detection of target nucleic acids including <em>KRAS</em> oligonucleotide, fragmented mRNAs, and miR-21. Moreover, our detection system can discriminate single base mutations frequently occurred in cancer-associated genes including <em>KRAS</em>, <em>PIK3CA</em> and <em>P53</em> from cell extracts and circulating tumor DNAs (ctDNAs). The detection is highly sensitive, with a limit of detection down to 27 fM without pre-amplification. In view of a clinical application, we demonstrate the detection of single mutations after extraction and pre-amplification of ctDNAs from the plasma of breast cancer patients. Importantly, our detection strategy enabled the detection of single <em>KRAS</em> mutation even in the presence of 1000-fold excess of wild type (WT) DNA using multi-color flow cytometry detection approach. Overall, our strategy holds immense potential for clinical applications, offering significant improvements for early cancer detection and monitoring.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":null,"pages":null},"PeriodicalIF":10.7,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction notice to "A comprehensive study on transparent conducting oxides in compact microbial fuel cells: Integrated spectroscopic and electrochemical analyses for monitoring biofilm growth" [Biosens. Bioelectron. 250 (2024) 116067]. 关于 "紧凑型微生物燃料电池中透明导电氧化物的综合研究:用于监测生物膜生长的光谱和电化学综合分析" [Biosens.
IF 10.7 1区 生物学
Biosensors and Bioelectronics Pub Date : 2024-10-05 DOI: 10.1016/j.bios.2024.116812
Raden Priyo Hartono Adji, Isa Anshori, Robeth Viktoria Manurung, Taufiqqurrachman, D Mahmudin, Pamungkas Daud, Deni Permana Kurniadi, Eko Joni Pristianto, Arief Nur Rahman, Winy Desvasari, Sulistyaningsih, Raden Deasy Mandasari, Hiskia, Goib Wiranto
{"title":"Retraction notice to \"A comprehensive study on transparent conducting oxides in compact microbial fuel cells: Integrated spectroscopic and electrochemical analyses for monitoring biofilm growth\" [Biosens. Bioelectron. 250 (2024) 116067].","authors":"Raden Priyo Hartono Adji, Isa Anshori, Robeth Viktoria Manurung, Taufiqqurrachman, D Mahmudin, Pamungkas Daud, Deni Permana Kurniadi, Eko Joni Pristianto, Arief Nur Rahman, Winy Desvasari, Sulistyaningsih, Raden Deasy Mandasari, Hiskia, Goib Wiranto","doi":"10.1016/j.bios.2024.116812","DOIUrl":"10.1016/j.bios.2024.116812","url":null,"abstract":"","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":null,"pages":null},"PeriodicalIF":10.7,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced neural activity detection with microelectrode arrays modified by drug-loaded calcium alginate/chitosan hydrogel 利用藻酸钙/壳聚糖水凝胶修饰的微电极阵列增强神经活动检测。
IF 10.7 1区 生物学
Biosensors and Bioelectronics Pub Date : 2024-10-04 DOI: 10.1016/j.bios.2024.116837
{"title":"Enhanced neural activity detection with microelectrode arrays modified by drug-loaded calcium alginate/chitosan hydrogel","authors":"","doi":"10.1016/j.bios.2024.116837","DOIUrl":"10.1016/j.bios.2024.116837","url":null,"abstract":"<div><div>Microelectrode arrays (MEAs) are pivotal brain-machine interface devices that facilitate in situ and real-time detection of neurophysiological signals and neurotransmitter data within the brain. These capabilities are essential for understanding neural system functions, treating brain disorders, and developing advanced brain-machine interfaces. To enhance the performance of MEAs, this study developed a crosslinked hydrogel coating of calcium alginate (CA) and chitosan (CS) loaded with the anti-inflammatory drug dexamethasone sodium phosphate (DSP). By modifying the MEAs with this hydrogel and various conductive nanomaterials, including platinum nanoparticles (PtNPs) and poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS), the electrical properties and biocompatibility of the electrodes were optimized. The hydrogel coating matches the mechanical properties of brain tissue more effectively and, by actively releasing anti-inflammatory drugs, significantly reduces post-implantation tissue inflammation, extends the electrodes' lifespan, and enhances the quality of neural activity detection. Additionally, this modification ensures high sensitivity and specificity in the detection of dopamine (DA), displaying high-quality dual-mode neural activity during <em>in vivo</em> testing and revealing significant functional differences between neuron types under various physiological states (anesthetized and awake). Overall, this study showcases the significant application value of bioactive hydrogels as excellent nanobiointerfaces and drug delivery carriers for long-term neural monitoring. This approach has the potential to enhance the functionality and acceptance of brain-machine interface devices in medical practice and has profound implications for future neuroscience research and the development of strategies for treating neurological diseases.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":null,"pages":null},"PeriodicalIF":10.7,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wool powder assisted colorimetric sensing yarn with high sensitivity for NH3 monitoring 用于监测 NH3 的高灵敏度羊毛粉辅助比色传感纱线。
IF 10.7 1区 生物学
Biosensors and Bioelectronics Pub Date : 2024-10-04 DOI: 10.1016/j.bios.2024.116833
{"title":"Wool powder assisted colorimetric sensing yarn with high sensitivity for NH3 monitoring","authors":"","doi":"10.1016/j.bios.2024.116833","DOIUrl":"10.1016/j.bios.2024.116833","url":null,"abstract":"<div><div>Colorimetric sensors have applications in gas monitoring due to their simple and quick detection through visible color changes. However, it remains challenging to prepare colorimetric sensors with high sensitivity. Herein, this work fabricated a biomass-based colorimetric sensing yarn with high sensitivity using anthocyanins as the colorimetric dye and wool powder as an effective ammonia (NH<sub>3</sub>) adsorbent. The sensitivity of the prepared yarns was evaluated for detection limit and response time. Surprisingly, the addition of 3% wool powder greatly improved the sensitivity of the prepared yarns, with a reduction of both detection limit and responsive time from 100 ppm to 20 ppm, and 2 min to 20 s, respectively when exposed in 150 ppm NH<sub>3</sub>. The prepared yarns also showed good selectivity and reusability. An example of the practical use of colorimetric yarns was presented. This work provides a facile strategy for fabricating wearable devices for toxic gas monitoring with visual output.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":null,"pages":null},"PeriodicalIF":10.7,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New sensing methods using commercially available products: Based on PGM and PTS 使用市售产品的新传感方法:基于 PGM 和 PTS。
IF 10.7 1区 生物学
Biosensors and Bioelectronics Pub Date : 2024-10-04 DOI: 10.1016/j.bios.2024.116836
{"title":"New sensing methods using commercially available products: Based on PGM and PTS","authors":"","doi":"10.1016/j.bios.2024.116836","DOIUrl":"10.1016/j.bios.2024.116836","url":null,"abstract":"<div><div>In recent years, detection technology has made remarkable progress in the field of food safety, <em>in vitro</em> diagnosis, and environment monitoring under the impetus of trace substances detection requirements. However, in sharp contrast to the rapid development of detection technology, its marketization process is relatively lagging behind. One possible approach is to integrate novel sensing strategies with mature commercial devices, such as personal glucose meters (PGMs) and pregnancy test strips (PTS) to speed up their marketization process. In this review, we systematically summarized design principle, evolution, and application progress for the integration of novel sensing strategies with commercial devices PGMs and PTS. Meanwhile, key factors and difficulties for the integration novel sensing strategies with commercial devices were emphasized. More importantly, the future of prospects and remaining challenges were discussed.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":null,"pages":null},"PeriodicalIF":10.7,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The value of electrochemical ratiometry in immunosensing: A systematic study. 电化学比率法在免疫传感中的价值:系统研究。
IF 10.7 1区 生物学
Biosensors and Bioelectronics Pub Date : 2024-10-04 DOI: 10.1016/j.bios.2024.116817
Jin Song, Rui Gong, Shibo Song, Ghulam Abbas, Yaohong Ma, Yiwei Li
{"title":"The value of electrochemical ratiometry in immunosensing: A systematic study.","authors":"Jin Song, Rui Gong, Shibo Song, Ghulam Abbas, Yaohong Ma, Yiwei Li","doi":"10.1016/j.bios.2024.116817","DOIUrl":"10.1016/j.bios.2024.116817","url":null,"abstract":"<p><p>Reluctant reproducibility and accuracy make electrochemical immunosensors suffering from high possibility of false negative/positive results, and it is the main obstacle that hinders them into an eligible alternative technology to the gold-standard method. It has been demonstrated sporadically previously that ratiometry helps deal with this issue but to what extent this could be beneficial and why it could fulfill is yet to be explored. In this study, to the best of our knowledge, for the first time, we have attempted to answer these questions through comprehensive experiments. For this purpose, labeled and label-free electrochemical immunosensors for SARS-CoV-2 pseudovirus quantification are constructed as a model electrochemical immunosensor. Conventional and ratiometric immunosensors are prepared by using electrochemically synthesized graphene modified electrodes coupled with various electrochemical probe pairs. It was found that the electrocatalyst modification at the electrode interface makes the predominant contribution to immunosensor sensitivity, while appropriate ratiometry provided electrochemical immunosensors with significantly enhanced reproducibility, accuracy, as well as sensing stability. Further, the experiments confirmed that the improvement in sensor performance achieved by ratiometry is primarily through overcoming the inherent errors and dynamic variations of the base electrode. It is also demonstrated electrochemical immunosensors made thereof could easily rival the performances of the gold-standard PCR method, in the view of immunoassay diagnosis. Therefore, it is of great promise to evolve electrochemical immunosensors into an eligible substitute technique towards the prevalent nucleic acid detection method in point-of-care testing (POCT), with the aid of electrochemical ratiometry.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":null,"pages":null},"PeriodicalIF":10.7,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Probiotic bacterial adsorption coupled with CRISPR/Cas12a system for mercury (II) ions detection" [Biosens. Bioelectron. 263 (2024) 116627]. 对 "结合 CRISPR/Cas12a 系统的益生菌吸附与汞 (II) 离子检测 "的更正 [Biosens.
IF 10.7 1区 生物学
Biosensors and Bioelectronics Pub Date : 2024-10-03 DOI: 10.1016/j.bios.2024.116831
Ying Yu, Yuan Zhang, Yining Zhao, Kangzheng Lv, Lianzhong Ai, Zhengjun Wu, Zibo Song, Juan Zhang
{"title":"Corrigendum to \"Probiotic bacterial adsorption coupled with CRISPR/Cas12a system for mercury (II) ions detection\" [Biosens. Bioelectron. 263 (2024) 116627].","authors":"Ying Yu, Yuan Zhang, Yining Zhao, Kangzheng Lv, Lianzhong Ai, Zhengjun Wu, Zibo Song, Juan Zhang","doi":"10.1016/j.bios.2024.116831","DOIUrl":"10.1016/j.bios.2024.116831","url":null,"abstract":"","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":null,"pages":null},"PeriodicalIF":10.7,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Portable self-powered electrochemical aptasensor for ultrasensitive and real-time detection of microcystin-RR based on hydrovoltaic-photothermal coupling effect 基于氢伏特-光热耦合效应的超灵敏、实时检测微囊藻毒素-RR 的便携式自供电电化学适体传感器。
IF 10.7 1区 生物学
Biosensors and Bioelectronics Pub Date : 2024-10-03 DOI: 10.1016/j.bios.2024.116834
{"title":"Portable self-powered electrochemical aptasensor for ultrasensitive and real-time detection of microcystin-RR based on hydrovoltaic-photothermal coupling effect","authors":"","doi":"10.1016/j.bios.2024.116834","DOIUrl":"10.1016/j.bios.2024.116834","url":null,"abstract":"<div><div>Coupling different energy harvesting technologies to obtain an excellent output signal is essential for the development of high-performance self-powered electrochemical sensors. Herein, a novel hydrovoltaic-photothermal coupling self-powered electrochemical aptasensing platform was designed for sensitive detection of microcystin (MC-RR) with a digital multimeter as a direct visual readout strategy. The straightforward ultrasonic method was employed to synthesize polyaniline (PANI) and bismuth oxybromide (BiOBr) nanosheets, which were then integrated as active components in a hydrovoltaic device. The unique layer structure of two-dimensional (2D) nanomaterials BiOBr can create flexible interlayer spaces to accommodate various ions and water molecules, which was beneficial to construct evaporation-driven channels. Meanwhile, the exceptional photothermal characteristics of polyaniline could accelerate the water evaporation rate, consequently boosting the migration speed of charge carriers and increasing output signal. Moreover, a digital multimeter was connected to the constructed sensor for real-time displaying the output signal. With the assistance of aptamer, a novel self-powered electrochemical aptasensing platform was constructed for sensitive detection of MC-RR. Under optimum conditions, the output signal of the hydrovoltaic-photothermal coupling cell was linearly related to the logarithm of MC-RR concentration in the range of 1 fM to 1 nM with a detection limit of 0.31 fM (S/N = 3). Furthermore, this sensor also exhibited many advantages such as high selectivity, good repeatability and portability. Such novel strategy not only offers a completely new general approach to construct high-performance self-powered devices for the detection of MC-RR, but also provides a new strategy for advancing the miniaturization and field application of self-powered electrochemical sensors.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":null,"pages":null},"PeriodicalIF":10.7,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, fabrication, and calibration of a micromachined thermocouple for biological applications in temperature monitoring 设计、制造和校准用于生物温度监测的微机械热电偶。
IF 10.7 1区 生物学
Biosensors and Bioelectronics Pub Date : 2024-10-03 DOI: 10.1016/j.bios.2024.116835
{"title":"Design, fabrication, and calibration of a micromachined thermocouple for biological applications in temperature monitoring","authors":"","doi":"10.1016/j.bios.2024.116835","DOIUrl":"10.1016/j.bios.2024.116835","url":null,"abstract":"<div><div>This paper presents a microneedle thermocouple probe designed for temperature measurements in biological samples, addressing a critical need in the field of biology. Fabricated on a Silicon-On-Insulator (SOI) wafer, the probe features a doped silicon (Si)/chrome (Cr)/gold (Au) junction, providing a high Seebeck coefficient, rapid response times, and excellent temperature resolution. The microfabrication process produces a microneedle with a triangular sensing junction. Finite Element Analysis (FEA) was employed to evaluate the thermal time constant and structural integrity in tissue, supporting the probe's suitability for biological applications. Experimental validation included temperature measurements in <em>ex-vivo</em> tissue and live Xenopus laevis oocytes. Notably, intracellular thermogenesis was detected by increasing extracellular potassium concentration to depolarize the oocyte membrane, resulting in a measurable temperature rise. These findings highlight the probe's potential as a robust tool for monitoring temperature variations in biological systems.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":null,"pages":null},"PeriodicalIF":10.7,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信