Applied Catalysis B: Environmental最新文献

筛选
英文 中文
Conversion of CO2 to higher alcohols on K-CuZnAl/Zr-CuFe composite 在 K-CuZnAl/Zr-CuFe 复合材料上将 CO2 转化为高级醇
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2024-01-18 DOI: 10.1016/j.apcatb.2024.123748
Qian Zhang , Sen Wang , Xuerong Shi , Mei Dong , Jiangang Chen , Juan Zhang , Jianguo Wang , Weibin Fan
{"title":"Conversion of CO2 to higher alcohols on K-CuZnAl/Zr-CuFe composite","authors":"Qian Zhang ,&nbsp;Sen Wang ,&nbsp;Xuerong Shi ,&nbsp;Mei Dong ,&nbsp;Jiangang Chen ,&nbsp;Juan Zhang ,&nbsp;Jianguo Wang ,&nbsp;Weibin Fan","doi":"10.1016/j.apcatb.2024.123748","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.123748","url":null,"abstract":"<div><p>Direct conversion of CO<sub>2</sub> into higher alcohols (C<sub>2+</sub>OH) is highly desirable, but rather challenging due to requiring the synergetic action of C-C coupling and CO insertion. Here, we developed a new K-CuZnAl/Zr-CuFe composite, which gave CO<sub>2</sub> conversion and C<sub>2+</sub>OH selectivity of 40.6% and 22.4% respectively, while CO selectivity is only 10.3% at 320 °C, 4 MPa and 6000 mL g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>. The C<sub>2+</sub>OH STY can reach 195.1 mg g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup>, and is well maintained within 200 h at higher GHSV of 24000 mL g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>. Introduction of K-CuZnAl and decrease of the contact distance of K-CuZnAl and Zr-CuFe boost the formation and subsequent conversion of CO* intermediate. In addition, doping small amounts of Zr into CuFe catalyst hinders the phase separation of Cu and Fe species by enhancing their interface interaction. As a result, the CH<sub>x</sub> * species generated on iron carbide through CO* dissociative activation quickly reacts with the non-dissociative adsorbed CO* on adjacent Cu to produce more C<sub>2+</sub>OH.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139503598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of the chemical states of N sites and mesoporosity of N-doped carbon supports on single-atom Ru catalysts during CO2-to-formate conversion 二氧化碳转化为甲酸盐过程中 N 位点的化学状态和掺杂 N 的碳载体的介孔率对单原子 Ru 催化剂的影响
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2024-01-18 DOI: 10.1016/j.apcatb.2024.123751
Kwangho Park , Kyung Rok Lee , Sunghee Ahn , Canh Van Nguyen , Kwang-Deog Jung
{"title":"Effects of the chemical states of N sites and mesoporosity of N-doped carbon supports on single-atom Ru catalysts during CO2-to-formate conversion","authors":"Kwangho Park ,&nbsp;Kyung Rok Lee ,&nbsp;Sunghee Ahn ,&nbsp;Canh Van Nguyen ,&nbsp;Kwang-Deog Jung","doi":"10.1016/j.apcatb.2024.123751","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.123751","url":null,"abstract":"<div><p>This study explores the fabrication and characterization of mesoporous nitrogen-doped carbon replicas (MNCs) as Ru catalyst supports for CO<sub>2</sub> hydrogenation to formate. MNC supports with a cubic Ia3d-like structure were successfully synthesized from a KIT-6 template. The mesoporosity, N content, and N states in the MNCs differed according to the precursor type, which substantially influenced the stability of single-atom Ru catalysts during CO<sub>2</sub><span><span> conversion. In hydrogenation tests, the Ru/MNC prepared using acrylonitrile precursor (Ru/MNC-A) demonstrated the best stability, whereas the Ru/MNCs prepared using pyrrole and </span>melamine exhibited low activity owing to Ru agglomeration and limited reactant diffusion, respectively. The excellent stability of Ru/MNC-A resulted from Ru migration and rearrangement, as evidenced by near edge X-ray absorption fine structure analyses. Ru/MNC-A and Ru/MNC-A-400 achieved an outstanding turnover number of 69,000 in CO</span><sub>2</sub> hydrogenation over 72 h. Remarkably, the Ru/MNC-A catalyst demonstrated exceptional stability, attaining a TON of 315,840 over 360 h.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139503691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visible-light responsive TiO2 for the complete photocatalytic decomposition of volatile organic compounds (VOCs) and its efficient acceleration by thermal energy 用于完全光催化分解挥发性有机化合物 (VOC) 的可见光响应型二氧化钛及其热能的高效加速作用
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2024-01-17 DOI: 10.1016/j.apcatb.2024.123745
Kosuke Imai, Takashi Fukushima, Hisayoshi Kobayashi, Shinya Higashimoto
{"title":"Visible-light responsive TiO2 for the complete photocatalytic decomposition of volatile organic compounds (VOCs) and its efficient acceleration by thermal energy","authors":"Kosuke Imai, Takashi Fukushima, Hisayoshi Kobayashi, Shinya Higashimoto","doi":"10.1016/j.apcatb.2024.123745","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.123745","url":null,"abstract":"<p>Titanium dioxide (TiO<sub>2</sub>) semiconductors are known to exhibit photocatalysis by bandgap excitation upon UV-light (<em>hv</em> &gt; 3.2<!-- --> <!-- -->eV) irradiation. TiO<sub>2</sub> has been extensively investigated in the challenge to address the urgent need for environmental remediation such as the degradation of volatile organic compounds (VOCs). In this study, it was striking that the TiO<sub>2</sub> exhibited effective reactivity for the complete degradation of various VOCs such as benzene, toluene and m-xylene (BTX) into CO<sub>2</sub> under visible-light irradiation (2.3<!-- --> <!-- -->eV &lt; <em>hv</em>). This is because the adsorption of various VOCs on TiO<sub>2</sub> results in the formation of an interfacial surface complex (ISC) that provides weak light absorption in the visible light region. In particular, the correlation between the apparent quantum yields in the photocatalytic decomposition of toluene and the light absorption wavelengths of the ISC was clearly demonstrated. By density functional theory (DFT) simulations, the mechanism for origin of the visible-light responsive TiO<sub>2</sub> was clarified. Furthermore, thermal effects on the visible-light responsive TiO<sub>2</sub> photocatalysis were investigated. It was found that the combination of visible light-energy and its excess thermal energy significantly enhanced activity for the degradation of toluene.</p>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139495697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled doping of ultralow amounts Ru on Ni cathode for PEMWE: Experimental and theoretical elucidation of enhanced performance 在用于 PEMWE 的镍阴极上受控掺入超低量 Ru:实验和理论阐明性能的提升
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2024-01-17 DOI: 10.1016/j.apcatb.2024.123738
Kyeong-Rim Yeo , Hoyoung Kim , Kug-Seung Lee , Seongbeen Kim , Jinwoo Lee , Haesun Park , Soo-Kil Kim
{"title":"Controlled doping of ultralow amounts Ru on Ni cathode for PEMWE: Experimental and theoretical elucidation of enhanced performance","authors":"Kyeong-Rim Yeo ,&nbsp;Hoyoung Kim ,&nbsp;Kug-Seung Lee ,&nbsp;Seongbeen Kim ,&nbsp;Jinwoo Lee ,&nbsp;Haesun Park ,&nbsp;Soo-Kil Kim","doi":"10.1016/j.apcatb.2024.123738","DOIUrl":"10.1016/j.apcatb.2024.123738","url":null,"abstract":"<div><p><span>Proton exchange membrane water electrolysis (PEMWE) is an environmentally benign technology for large-scale hydrogen production<span>. Despite many catalysts being developed to replace Pt, successful development of low-cost catalysts that meet the balance of performance and durability is limited. In this work, atomically dispersed Ru on Ni catalyst-integrated porous transport electrodes were fabricated by a simple electrodeposition. With a trace amount of Ru (&lt; 0.05 mg</span></span><sub>Ru</sub>·cm<sup>−2</sup>), the Ni<sub>98.1</sub>Ru<sub>1.9</sub> cathode catalyst exhibited an overpotential of 35 mV at –10 mA·cm<sup>−2</sup> with excellent stability. Density functional theory calculation revealed that the high performance was driven by optimized adsorption strength and improved mobility of hydrogen on the catalyst surface. The Ni<sub>98.1</sub>Ru<sub>1.9</sub> electrode was further verified in a PEMWE cell and resulting performance (6.0 A·cm<sup>−2</sup> at 2.25 V<sub>cell</sub>) and stability (0.13 mV·h<sup>−1</sup> decay rate at 1 A·cm<sup>−2</sup>) surpassed previously reported non-Pt and even Pt electrodes, demonstrating its readiness as an advanced cathode to replace Pt.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139495699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesoporous zeolite ZSM-5 confined Cu nanoclusters for efficient selective catalytic reduction of NOx by NH3 介孔沸石 ZSM-5 内含铜纳米团簇,可高效选择性催化还原 NH3 中的氮氧化物
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2024-01-17 DOI: 10.1016/j.apcatb.2024.123747
Sun Yuanyuan , Zhanyu Li , Xiaoxia Zhou , Guohui Li , Min Tan , Shuang Ao , Wei Sun , Hangrong Chen
{"title":"Mesoporous zeolite ZSM-5 confined Cu nanoclusters for efficient selective catalytic reduction of NOx by NH3","authors":"Sun Yuanyuan ,&nbsp;Zhanyu Li ,&nbsp;Xiaoxia Zhou ,&nbsp;Guohui Li ,&nbsp;Min Tan ,&nbsp;Shuang Ao ,&nbsp;Wei Sun ,&nbsp;Hangrong Chen","doi":"10.1016/j.apcatb.2024.123747","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.123747","url":null,"abstract":"<div><p>Cu-based catalysts have been widely used in ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) of NO<sub>x</sub><span> for their excellent low temperature denitration performance. However, the aggregation of Cu species has been a troubling problem in catalyst design. Herein, spherical zeolite ZSM-5 confined Cu nanoclusters Cu@ZSM-5 has been successfully constructed </span><em>via in-situ</em> self-assembly process. It exhibits high specific surface area (373 m<sup>2</sup>g<sup>−1</sup>), higher concentration of Cu<sup>+</sup>, rich oxygen vacancies and more acid sites compared with Cu/ZSM-5. The results indicate that strong acid sites of carrier could improve high-temperature catalytic activity, and Cu species as active sites could significantly improve both the low-temperature and high-temperature catalytic reduction activity of NO<sub>x</sub>, especially, its performance maintained unchanged after coating on honeycomb ceramics. Thanks to strong surface acidity sites and the confinement effect, the Cu@ZSM-5 exhibited super activity, high N<sub>2</sub> selectivity, wide operating temperature window and strong water resistance.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139503597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photothermal interface with high-adhesive superhydrophobicity to construct vapor splitting module for hydrogen evolution from seawater 具有高粘附性超疏水性的光热界面,用于构建海水氢气进化的水汽分离模块
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2024-01-17 DOI: 10.1016/j.apcatb.2024.123743
Wei Wang , Yanan Li , Xiao Yu , Li Zhang , Yan Wang , Haichuan He , Henan Zhao , Wansong Chen , Jianghua Li , Liu Deng , You-Nian Liu
{"title":"Photothermal interface with high-adhesive superhydrophobicity to construct vapor splitting module for hydrogen evolution from seawater","authors":"Wei Wang ,&nbsp;Yanan Li ,&nbsp;Xiao Yu ,&nbsp;Li Zhang ,&nbsp;Yan Wang ,&nbsp;Haichuan He ,&nbsp;Henan Zhao ,&nbsp;Wansong Chen ,&nbsp;Jianghua Li ,&nbsp;Liu Deng ,&nbsp;You-Nian Liu","doi":"10.1016/j.apcatb.2024.123743","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.123743","url":null,"abstract":"<div><p><span>Direct photocatalytic hydrogen evolution from seawater is an appealing approach to migrate the crisis of carbon emissions. However, limited solar energy utilization and catalyst poisoning are two obstacles to the hydrogen evolution from seawater. Herein, a microneedle module that integrates with solar-driven vapor generation and vapor splitting to realize directly solar-driven seawater splitting has been designed. The photothermal pedestal with high-adhesive superhydrophobicity not only provides sufficient vapor generation, but also isolates harmful substances such as salt in seawater from photocatalysts. Besides, the pedestal with superhydrophobicity and photothermal effect can provide high-temperature gas–solid reaction sites for photocatalyst microneedles to thermodynamically promote the desorption of hydrogen. Thus, the integrated module exhibits a remarkable hydrogen evolution rate of 200.5 mmol g</span><sup>–1</sup> h<sup>–1</sup> in seawater. The rational design of multifunctional interfaces opens a new window for high-efficiency direct seawater splitting to hydrogen evolution.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139503599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fe2O3/P-doped CoMoO4 electrocatalyst delivers efficient overall water splitting in alkaline media 掺杂 Fe2O3/P 的 CoMoO4 电催化剂在碱性介质中实现高效整体水分离
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2024-01-16 DOI: 10.1016/j.apcatb.2024.123741
Bowen Wang , Xiangxiong Chen , Yingjian He , Qin Liu , Xinxin Zhang , Ziyu Luo , John V. Kennedy , Junhua Li , Dong Qian , Jinlong Liu , Geoffrey I.N. Waterhouse
{"title":"Fe2O3/P-doped CoMoO4 electrocatalyst delivers efficient overall water splitting in alkaline media","authors":"Bowen Wang ,&nbsp;Xiangxiong Chen ,&nbsp;Yingjian He ,&nbsp;Qin Liu ,&nbsp;Xinxin Zhang ,&nbsp;Ziyu Luo ,&nbsp;John V. Kennedy ,&nbsp;Junhua Li ,&nbsp;Dong Qian ,&nbsp;Jinlong Liu ,&nbsp;Geoffrey I.N. Waterhouse","doi":"10.1016/j.apcatb.2024.123741","DOIUrl":"10.1016/j.apcatb.2024.123741","url":null,"abstract":"<div><p>Phosphorization of molybdates has been shown to promote hydrogen evolution reaction (HER) activity but is usually detrimental to oxygen evolution reaction (OER) activity, frustrating efforts to create bifunctional HER/OER electrocatalysts. Herein, we show that Fe<sub>2</sub>O<sub>3</sub>-modulated P-doped CoMoO<sub>4</sub> on nickel foam (Fe-P-CMO) is an excellent bifunctional HER/OER electrocatalyst in alkaline media, with the adverse effect of phosphorization on the OER activity of CoMoO<sub>4</sub> being countered <em>via</em> Fe<sub>2</sub>O<sub>3</sub> introduction. An alkaline splitting electrolyser assembled directly using the self-supporting Fe-P-CMO electrode possessed outstanding long-term durability with ultralow cell voltages of 1.48 and 1.59 V required to achieve current densities of 10 and 100 mA cm<sup>−2</sup>, respectively. Detailed experimental investigations showed that during HER, P-doped CoMoO<sub>4</sub> in Fe-P-CMO underwent surface reconstruction with the <em>in-situ</em> formation of Co(OH)<sub>2</sub> on the P-CoMoO<sub>4</sub> (Co(OH)<sub>2</sub>/P-CoMoO<sub>4</sub>). During OER, P-doped CoMoO<sub>4</sub> was deeply reconstructed to CoOOH with the complete dissolution of Mo, leading to the <em>in-situ</em> formation of Fe<sub>2</sub>O<sub>3</sub>/CoOOH heterojunctions.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139475765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ formation of hydroxylated Ag active sites over Ag/MnO2 modified by alkali metals for stable decomposition of ozone under humid conditions 在碱金属修饰的 Ag/MnO2 上原位形成羟基化 Ag 活性位点,以便在潮湿条件下稳定分解臭氧
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2024-01-16 DOI: 10.1016/j.apcatb.2024.123736
Xiaotong Li , Jinzhu Ma , Guangzhi He , Zhisheng Wang , Hong He
{"title":"In-situ formation of hydroxylated Ag active sites over Ag/MnO2 modified by alkali metals for stable decomposition of ozone under humid conditions","authors":"Xiaotong Li ,&nbsp;Jinzhu Ma ,&nbsp;Guangzhi He ,&nbsp;Zhisheng Wang ,&nbsp;Hong He","doi":"10.1016/j.apcatb.2024.123736","DOIUrl":"10.1016/j.apcatb.2024.123736","url":null,"abstract":"<div><p>Ag/MnO<sub><em>x</em></sub> catalysts have great prospects for practical application in ozone decomposition due to their excellent activity and water resistance; yet, improving the stability of Ag/MnO<sub><em>x</em></sub><span> catalysts for ozone decomposition remains challenging. Here, the addition of alkali metals significantly improved the stability of 2%Ag/MnO</span><sub>2</sub><span> catalyst for ozone decomposition under humid conditions. Alkali metals donate electrons to Ag nanoparticles through oxygen bridges, forcing Ag active sites to become hydroxylated by promoting the dissociation of H</span><sub>2</sub>O molecules, and finally forming new stable hydroxylated Ag active sites (Ag-O(OH)<sub>x</sub>-K). The O<sub>2</sub><sup>2-</sup> species on the new active sites of the 2%K-2%Ag/MnO<sub>2</sub> catalyst can easily desorb; therefore, the hydroxylated active sites can remain stable. These factors are key to the stable ozone decomposition activity of 2%K-2%Ag/MnO<sub>2</sub> catalyst in humid gas. This study represents a critical step towards the design and synthesis of high-stability catalysts for ozone decomposition.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139475684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deactivation of Porphyrin Metal-Organic Framework in Advanced Oxidation Process: Photobleaching and Underlying Mechanism 高级氧化过程中卟啉金属有机框架的失活:光漂白与基本机制
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2024-01-16 DOI: 10.1016/j.apcatb.2024.123746
Yufei Shu, Xun Liu, Meng Zhang, Bei Liu, Zhongying Wang
{"title":"Deactivation of Porphyrin Metal-Organic Framework in Advanced Oxidation Process: Photobleaching and Underlying Mechanism","authors":"Yufei Shu, Xun Liu, Meng Zhang, Bei Liu, Zhongying Wang","doi":"10.1016/j.apcatb.2024.123746","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.123746","url":null,"abstract":"<p>Porphyrin metal-organic frameworks (MOFs) are widely used in photocatalytic advanced oxidation processes (AOP). However, the stability and deactivation of MOFs, crucial for reusability, have been understudied compared to their catalytic activity. We investigated photobleaching in porphyrin MOFs PCN-224-M (M= H<sub>2</sub>, Fe, Co, Cu, Zn) under visible light and H<sub>2</sub>O<sub>2</sub>. The MOFs exhibited crystallinity loss, ring-opening cleavage, and linker degradation. Photobleaching resulted from direct redox reactions between porphyrin sites and H<sub>2</sub>O<sub>2</sub>. Metal-oxo-porphyrin intermediates played a key role in the \"group effect,\" with different functional groups affecting the photobleaching rate: PCN-224-Fe ≈ PCN-224-Co &gt; PCN-224-H<sub>2</sub> &gt; PCN-224-Cu ≈ PCN-224-Zn. This trend related to chelated metal ions' electronic structures and their propensity for metal-oxo intermediate formation, establishing a structure-stability relationship. Our study enhances understanding of deactivation mechanisms in porphyrin MOFs during AOP, aiding the design of resilient and efficient MOF catalysts for environmental applications.</p>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139475807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic Polarization and Oxygen Vacancies Engineering for Enhancing Photocatalytic NO Removal over Bi4Ti3O12 Nanowires 增强 Bi4Ti3O12 纳米线光催化去除氮氧化物的极化和氧空位工程协同作用
IF 22.1 1区 化学
Applied Catalysis B: Environmental Pub Date : 2024-01-15 DOI: 10.1016/j.apcatb.2024.123734
Qiuhui Zhu, Yu Wang, Junjun Wang, Jianmin Luo, Jingsan Xu, Chuanyi Wang
{"title":"Synergistic Polarization and Oxygen Vacancies Engineering for Enhancing Photocatalytic NO Removal over Bi4Ti3O12 Nanowires","authors":"Qiuhui Zhu, Yu Wang, Junjun Wang, Jianmin Luo, Jingsan Xu, Chuanyi Wang","doi":"10.1016/j.apcatb.2024.123734","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.123734","url":null,"abstract":"<p>Enhanced polarization emerges as a potent strategy for further enhancing the photocatalytic performance of a photocatalyst. Considering the anisotropy of ferroelectric polarization and the improvement of polarization by defects, [010] preferred growth Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> nanowires with oxygen vacancies were prepared via a hydrothermal method. Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> nanowires exhibited a photocatalytic NO removal efficiency of up to 67.5% under visible light irradiation (λ &gt; 420<!-- --> <!-- -->nm), which is much higher than that of its counterpart, Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> (3%). Structural characterizations and theoretical calculations support that, the engineering of oxygen vacancies in Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> can enhance the polarization in the [010] and [100] directions, and gradually shifted the polarization dominant direction of Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> from [100] to [010]. Overall, the improved polarization and generated oxygen vacancies enhanced the photocatalytic NO removal performance of Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> nanowires. This work elucidates the significance of rational engineering oxygen vacancy-based microstructures and utilizing the polarization to amplify the photocatalytic performance.</p>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":22.1,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信