Sun Yuanyuan , Zhanyu Li , Xiaoxia Zhou , Guohui Li , Min Tan , Shuang Ao , Wei Sun , Hangrong Chen
{"title":"Mesoporous zeolite ZSM-5 confined Cu nanoclusters for efficient selective catalytic reduction of NOx by NH3","authors":"Sun Yuanyuan , Zhanyu Li , Xiaoxia Zhou , Guohui Li , Min Tan , Shuang Ao , Wei Sun , Hangrong Chen","doi":"10.1016/j.apcatb.2024.123747","DOIUrl":null,"url":null,"abstract":"<div><p>Cu-based catalysts have been widely used in ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) of NO<sub>x</sub><span> for their excellent low temperature denitration performance. However, the aggregation of Cu species has been a troubling problem in catalyst design. Herein, spherical zeolite ZSM-5 confined Cu nanoclusters Cu@ZSM-5 has been successfully constructed </span><em>via in-situ</em> self-assembly process. It exhibits high specific surface area (373 m<sup>2</sup>g<sup>−1</sup>), higher concentration of Cu<sup>+</sup>, rich oxygen vacancies and more acid sites compared with Cu/ZSM-5. The results indicate that strong acid sites of carrier could improve high-temperature catalytic activity, and Cu species as active sites could significantly improve both the low-temperature and high-temperature catalytic reduction activity of NO<sub>x</sub>, especially, its performance maintained unchanged after coating on honeycomb ceramics. Thanks to strong surface acidity sites and the confinement effect, the Cu@ZSM-5 exhibited super activity, high N<sub>2</sub> selectivity, wide operating temperature window and strong water resistance.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"346 ","pages":"Article 123747"},"PeriodicalIF":20.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337324000584","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cu-based catalysts have been widely used in ammonia-selective catalytic reduction (NH3-SCR) of NOx for their excellent low temperature denitration performance. However, the aggregation of Cu species has been a troubling problem in catalyst design. Herein, spherical zeolite ZSM-5 confined Cu nanoclusters Cu@ZSM-5 has been successfully constructed via in-situ self-assembly process. It exhibits high specific surface area (373 m2g−1), higher concentration of Cu+, rich oxygen vacancies and more acid sites compared with Cu/ZSM-5. The results indicate that strong acid sites of carrier could improve high-temperature catalytic activity, and Cu species as active sites could significantly improve both the low-temperature and high-temperature catalytic reduction activity of NOx, especially, its performance maintained unchanged after coating on honeycomb ceramics. Thanks to strong surface acidity sites and the confinement effect, the Cu@ZSM-5 exhibited super activity, high N2 selectivity, wide operating temperature window and strong water resistance.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.