Kyeong-Rim Yeo , Hoyoung Kim , Kug-Seung Lee , Seongbeen Kim , Jinwoo Lee , Haesun Park , Soo-Kil Kim
{"title":"在用于 PEMWE 的镍阴极上受控掺入超低量 Ru:实验和理论阐明性能的提升","authors":"Kyeong-Rim Yeo , Hoyoung Kim , Kug-Seung Lee , Seongbeen Kim , Jinwoo Lee , Haesun Park , Soo-Kil Kim","doi":"10.1016/j.apcatb.2024.123738","DOIUrl":null,"url":null,"abstract":"<div><p><span>Proton exchange membrane water electrolysis (PEMWE) is an environmentally benign technology for large-scale hydrogen production<span>. Despite many catalysts being developed to replace Pt, successful development of low-cost catalysts that meet the balance of performance and durability is limited. In this work, atomically dispersed Ru on Ni catalyst-integrated porous transport electrodes were fabricated by a simple electrodeposition. With a trace amount of Ru (< 0.05 mg</span></span><sub>Ru</sub>·cm<sup>−2</sup>), the Ni<sub>98.1</sub>Ru<sub>1.9</sub> cathode catalyst exhibited an overpotential of 35 mV at –10 mA·cm<sup>−2</sup> with excellent stability. Density functional theory calculation revealed that the high performance was driven by optimized adsorption strength and improved mobility of hydrogen on the catalyst surface. The Ni<sub>98.1</sub>Ru<sub>1.9</sub> electrode was further verified in a PEMWE cell and resulting performance (6.0 A·cm<sup>−2</sup> at 2.25 V<sub>cell</sub>) and stability (0.13 mV·h<sup>−1</sup> decay rate at 1 A·cm<sup>−2</sup>) surpassed previously reported non-Pt and even Pt electrodes, demonstrating its readiness as an advanced cathode to replace Pt.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"346 ","pages":"Article 123738"},"PeriodicalIF":20.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled doping of ultralow amounts Ru on Ni cathode for PEMWE: Experimental and theoretical elucidation of enhanced performance\",\"authors\":\"Kyeong-Rim Yeo , Hoyoung Kim , Kug-Seung Lee , Seongbeen Kim , Jinwoo Lee , Haesun Park , Soo-Kil Kim\",\"doi\":\"10.1016/j.apcatb.2024.123738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Proton exchange membrane water electrolysis (PEMWE) is an environmentally benign technology for large-scale hydrogen production<span>. Despite many catalysts being developed to replace Pt, successful development of low-cost catalysts that meet the balance of performance and durability is limited. In this work, atomically dispersed Ru on Ni catalyst-integrated porous transport electrodes were fabricated by a simple electrodeposition. With a trace amount of Ru (< 0.05 mg</span></span><sub>Ru</sub>·cm<sup>−2</sup>), the Ni<sub>98.1</sub>Ru<sub>1.9</sub> cathode catalyst exhibited an overpotential of 35 mV at –10 mA·cm<sup>−2</sup> with excellent stability. Density functional theory calculation revealed that the high performance was driven by optimized adsorption strength and improved mobility of hydrogen on the catalyst surface. The Ni<sub>98.1</sub>Ru<sub>1.9</sub> electrode was further verified in a PEMWE cell and resulting performance (6.0 A·cm<sup>−2</sup> at 2.25 V<sub>cell</sub>) and stability (0.13 mV·h<sup>−1</sup> decay rate at 1 A·cm<sup>−2</sup>) surpassed previously reported non-Pt and even Pt electrodes, demonstrating its readiness as an advanced cathode to replace Pt.</p></div>\",\"PeriodicalId\":244,\"journal\":{\"name\":\"Applied Catalysis B: Environmental\",\"volume\":\"346 \",\"pages\":\"Article 123738\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environmental\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926337324000493\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337324000493","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Controlled doping of ultralow amounts Ru on Ni cathode for PEMWE: Experimental and theoretical elucidation of enhanced performance
Proton exchange membrane water electrolysis (PEMWE) is an environmentally benign technology for large-scale hydrogen production. Despite many catalysts being developed to replace Pt, successful development of low-cost catalysts that meet the balance of performance and durability is limited. In this work, atomically dispersed Ru on Ni catalyst-integrated porous transport electrodes were fabricated by a simple electrodeposition. With a trace amount of Ru (< 0.05 mgRu·cm−2), the Ni98.1Ru1.9 cathode catalyst exhibited an overpotential of 35 mV at –10 mA·cm−2 with excellent stability. Density functional theory calculation revealed that the high performance was driven by optimized adsorption strength and improved mobility of hydrogen on the catalyst surface. The Ni98.1Ru1.9 electrode was further verified in a PEMWE cell and resulting performance (6.0 A·cm−2 at 2.25 Vcell) and stability (0.13 mV·h−1 decay rate at 1 A·cm−2) surpassed previously reported non-Pt and even Pt electrodes, demonstrating its readiness as an advanced cathode to replace Pt.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.