Yali Zhang, Xinliu Geng, Linbing Ma, Mengting Li, Xinyue Zhao, Ling Sun, Rong Tan, Lijun Sun
{"title":"Wearable electrochemical immunosensor based on ultra-thin flexible stainless steel sheets for detection of methyl jasmonate in tomato leaves.","authors":"Yali Zhang, Xinliu Geng, Linbing Ma, Mengting Li, Xinyue Zhao, Ling Sun, Rong Tan, Lijun Sun","doi":"10.1016/j.bios.2025.117853","DOIUrl":null,"url":null,"abstract":"<p><p>Methyl jasmonate (MeJA), a key plant hormone, plays essential roles in plant growth, development, biotic stress responses, and wound-induced defense. Monitoring dynamic changes in MeJA in situ is vital for botanical research. Herein, coupling with paper-based analytical devices, the ultra-thin flexible stainless steel sheets with the excellent flexibility and conductivity were used to develop wearable electrochemical immunosensor for in situ and continuous detection of MeJA in plants. The ultra-thin flexible stainless steel sheets were modified with conducting carbon cement, ferrocene - graphene oxide - multi-walled carbon nanotubes composites, and MeJA antibodies to construct the wearable electrochemical immunosensor, which can detect the MeJA in the range of 10 pM-100 μM, and with a limit of detection of 5.4 pM. Using this wearable electrochemical immunosensor, the MeJA content in tomato leaves under wound stimulation was detected in situ and continuously. The results showed that MeJA levels in tomato leaves increased significantly with mechanical damage. A significant difference was observed between the untreated control group (0 cm) and the mechanically damaged group (2.0 cm), confirming the sensor's capability to monitor dynamic changes in MeJA in response to stress in real-time. In all, this study not only suggested that the ultra-thin flexible stainless steel sheets with the excellent flexibility and conductivity can be used to fabricated the wearable electrochemical sensors, but also provided a novel method for continuous in situ MeJA detection, which contributed to the understanding of MeJA regulatory mechanisms in plants and advancing precision agriculture technologies.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"288 ","pages":"117853"},"PeriodicalIF":10.5000,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.bios.2025.117853","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Methyl jasmonate (MeJA), a key plant hormone, plays essential roles in plant growth, development, biotic stress responses, and wound-induced defense. Monitoring dynamic changes in MeJA in situ is vital for botanical research. Herein, coupling with paper-based analytical devices, the ultra-thin flexible stainless steel sheets with the excellent flexibility and conductivity were used to develop wearable electrochemical immunosensor for in situ and continuous detection of MeJA in plants. The ultra-thin flexible stainless steel sheets were modified with conducting carbon cement, ferrocene - graphene oxide - multi-walled carbon nanotubes composites, and MeJA antibodies to construct the wearable electrochemical immunosensor, which can detect the MeJA in the range of 10 pM-100 μM, and with a limit of detection of 5.4 pM. Using this wearable electrochemical immunosensor, the MeJA content in tomato leaves under wound stimulation was detected in situ and continuously. The results showed that MeJA levels in tomato leaves increased significantly with mechanical damage. A significant difference was observed between the untreated control group (0 cm) and the mechanically damaged group (2.0 cm), confirming the sensor's capability to monitor dynamic changes in MeJA in response to stress in real-time. In all, this study not only suggested that the ultra-thin flexible stainless steel sheets with the excellent flexibility and conductivity can be used to fabricated the wearable electrochemical sensors, but also provided a novel method for continuous in situ MeJA detection, which contributed to the understanding of MeJA regulatory mechanisms in plants and advancing precision agriculture technologies.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.