Kyung-Shik Kim, Jin-Sung Park, Young-Chul Yoon, Jinwoo Kim, Ju Li, Bilge Yildiz, Cemal Cem Tasan
{"title":"Remove hydrogen and store it too: an acid-in-clay based electro-chemical solution.","authors":"Kyung-Shik Kim, Jin-Sung Park, Young-Chul Yoon, Jinwoo Kim, Ju Li, Bilge Yildiz, Cemal Cem Tasan","doi":"10.1039/d4mh01071j","DOIUrl":"https://doi.org/10.1039/d4mh01071j","url":null,"abstract":"<p><p>Extracting hydrogen from metallic components can open up a new pathway for preventing hydrogen embrittlement. To this end, we propose an electrochemically driven, all-solid method for hydrogen control, capable of both extracting and storing hydrogen simultaneously. In this approach, we employ acid-in-clay as a proton conducting electrolyte at room temperature. Through this electrochemical treatment, hydrogen is efficiently extracted from pre-charged steels, thereby restoring their tensile properties and preventing embrittlement. Moreover, it has been confirmed that the extracted hydrogen can be efficiently collected at the counter electrode, demonstrating the significant advantages of the process.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Milad Mahiny, Hossein Lotfi, Maryam Beigmohammadi, Mehdi Pooriraj, Maryam Heydari, Alireza Shirzad, Hamidreza Mahfouzi, Mohammad Khaja Nazeeruddin, Abd Rashid Bin Mohd Yusoff, Hossein Movla
{"title":"Pioneering non-thermal plasma as a defect passivator: a new Frontier in ambient metal halide perovskite synthesis.","authors":"Milad Mahiny, Hossein Lotfi, Maryam Beigmohammadi, Mehdi Pooriraj, Maryam Heydari, Alireza Shirzad, Hamidreza Mahfouzi, Mohammad Khaja Nazeeruddin, Abd Rashid Bin Mohd Yusoff, Hossein Movla","doi":"10.1039/d4mh01430h","DOIUrl":"https://doi.org/10.1039/d4mh01430h","url":null,"abstract":"<p><p>Growing energy demands make cost-effective, high-performance perovskite solar cells (PSCs) desirable. However, their commercial applications are limited due to defect formation and instability. Passivation technologies help enhance their favorable traits. Herein, we propose a pioneering technique utilizing non-thermal plasma (NTP) synthesis for passivating inherent defects and optimizing the energy levels of perovskites. AC-NTP utilizes ionic charges and uniform electric fields to effectively neutralize defect-induced charge traps, acting as a field-effect passivator. This approach not only mitigates energetic defects, but also facilitates the transformation of NH<sub>4</sub>PbI<sub>3</sub> into a CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> perovskite through a self-degassing mechanism. The perovskites synthesized using this method demonstrate notable advancements in their properties, as evidenced by X-ray diffraction, UV-vis spectroscopy, and scanning electron microscopy. These improvements include enhanced crystalline quality, superior optical characteristics, and precise nanoparticle size control, with an average size of 54 nm. <i>In situ</i> Rietveld refinement analysis reveals minimal PbI<sub>2</sub> formation, resulting in fewer lead iodide inversion defects. Accordingly, the PSC fabricated by AC-NTP shows a PCE of 15.25%, significantly higher than that fabricated by the DC one (13.29%), which demonstrates improved stability under ambient conditions for over 160 hours. Hysteresis assessment, SCLC analysis, and Shockley diode modeling show our PSCs' low defect densities and high interface quality. Moreover, DFT was applied to indirectly analyze the effects of NTP on the perovskites, focusing on quantum confinement effects and lattice arrangement's influence on the optoelectronic characteristics of MAPbI<sub>3</sub> nanoparticles. The findings confirm that NTP synthesis leads to more optimal PSCs, showing notable improvement in photovoltaics.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enis Oğuzhan Eren, Evgeny Senokos, Zihan Song, Brinti Mondal, Audrey Perju, Tim Horner, Elif Begüm Yılmaz, Ernesto Scoppola, Pierre-Louis Taberna, Patrice Simon, Markus Antonietti, Paolo Giusto
{"title":"Hard carbon from a sugar derivative for next-generation sodium-ion batteries.","authors":"Enis Oğuzhan Eren, Evgeny Senokos, Zihan Song, Brinti Mondal, Audrey Perju, Tim Horner, Elif Begüm Yılmaz, Ernesto Scoppola, Pierre-Louis Taberna, Patrice Simon, Markus Antonietti, Paolo Giusto","doi":"10.1039/d4mh01118j","DOIUrl":"10.1039/d4mh01118j","url":null,"abstract":"<p><p>Sodium-ion batteries have emerged as a promising secondary battery system due to the abundance of sodium resources. One of the boosters for accelerating the practical application of sodium-ion batteries is the innovation in anode materials. This study focuses on developing a high-performance hard carbon anode material derived from hydroxymethylfurfural, produced from carbohydrates, using a straightforward thermal condensation method. The process results in a unique pseudo-graphitic material with abundant microporosity. Electrochemical evaluations demonstrate excellent sodium storage performance by maintaining the plateau capacity even at higher current densities. This translates to a promising energy density when coupled with the cathode material. However, we also discuss the influence of electrolyte composition on the performance of the hydroxymethylfurfural-derived hard carbon, emphasizing the critical role of electrolyte optimization for the development of efficient and sustainable carbonaceous anode materials for next-generation sodium-based batteries.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Ying Bai, Qing Li Zhu, Han Lei Cheng, Xin Ling Wen, Zhi Jian Wang, Qiang Zheng, Zi Liang Wu
{"title":"Muscle-like hydrogels with fast isochoric responses and their applications as soft robots: a minireview.","authors":"Hui Ying Bai, Qing Li Zhu, Han Lei Cheng, Xin Ling Wen, Zhi Jian Wang, Qiang Zheng, Zi Liang Wu","doi":"10.1039/d4mh01187b","DOIUrl":"https://doi.org/10.1039/d4mh01187b","url":null,"abstract":"<p><p>Hydrogels with abundant water and responsiveness to external stimuli have emerged as promising candidates for artificial muscles and garnered significant interest for applications as soft actuators and robots. However, most hydrogels possess amorphous structures and exhibit slow, isotropic responses to external stimuli. These features are far inferior to real muscles, which have ordered structures and endow living organisms with programmable deformations and motions through fast, anisotropic responses in complex environments. In recent years, this issue has been addressed by a conceptual new strategy to develop muscle-like hydrogels with highly oriented nanosheets. These hydrogels exhibit fast, isochoric responses based on temperature-mediated electrostatic repulsion between charged nanosheets rather than water diffusion, which significantly advances the development of soft actuators and robots. This minireview summarizes the recent progress in muscle-like hydrogels and their applications as soft actuators and robots. We first introduce the synthesis of muscle-like hydrogels with monodomain structures and the unique mechanism for rapid and isochoric deformations. Then, the developments of hydrogels with complex ordered structures and hydrogel-based soft robots are discussed. The morphing mechanisms and motion kinematics of the hydrogel actuators and robots are highlighted. Finally, concluding remarks are given to discuss future opportunities and challenges in this field.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of carbon-based nanomaterials in Alzheimer's disease.","authors":"Mengyao Bai, Xu Shao, Chao Wang, Juanxia Wang, Xin Wang, Ping Guan, Xiaoling Hu","doi":"10.1039/d4mh01256a","DOIUrl":"https://doi.org/10.1039/d4mh01256a","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder marked by permanent impairment of brain function across the whole brain. This condition results in a progressive deterioration of cognitive function in patients and is frequently associated with psychological symptoms such as agitation and anxiety, imposing a significant burden on both patients and their families. Nanomaterials possess numerous distinctive physical and chemical features that render them extensively utilized. In the biomedical domain, nanomaterials can be utilized for disease prevention and therapy, including medication delivery systems, biosensors, and tissue engineering. This article explores the etiology and potential molecular processes of AD, as well as the application of carbon-based nanomaterials in the diagnosis and treatment of AD. Some of such nanomaterials are carbon quantum dots, carbon nanotubes, and graphene, among others. These materials possess distinctive physicochemical features that render them highly promising for applications in biosensing, drug delivery, neuroprotection, and photothermal treatment. In addition, this review explored various therapeutic approaches for AD in terms of reducing inflammation, preventing oxidative damage, and inhibiting Aβ aggregation. The advent of carbon nanomaterials in nanotechnology has facilitated the development of novel treatment approaches for Alzheimer's disease. These strategies provide promising approaches for early diagnosis, effective intervention and neuroprotection of the disease.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transformation study and characterization of Cu-BTC MOF-derived nanoporous copper oxide.","authors":"Sameh Khalil, Abhijit Ganguly, Davide Mariotti, Supriya Chakrabarti","doi":"10.1039/d4mh01085j","DOIUrl":"https://doi.org/10.1039/d4mh01085j","url":null,"abstract":"<p><p>This study provides a systematic and comprehensive investigation of the transformation process of copper-based metal-organic frameworks (Cu-BTC MOFs) into nanoporous copper oxides (P-CuO<sub><i>x</i></sub>) through controlled calcination. While calcination is a well-established method for producing MOF-derived oxides, previous studies have primarily focused on their applications. Most of them often lack detailed exploration of the transformation process and decomposition mechanisms though it is crucial for achieving tunability in MOF-derived structures. Our study addresses this gap by offering valuable insights that can guide the production of various MOF-derived oxides with tunable structural and functional properties. In this report, we have meticulously analysed the combined effects of calcination parameters, including temperature (250-500 °C), heating rate (0.5-10 °C min<sup>-1</sup>), and duration (1 and 2 hours) on the phase transformation, morphological features, and optical properties of Cu-BTC during its transformation to P-CuO<sub><i>x</i></sub>. Results revealed that fine adjustments to these calcination parameters allow precise control over phase purity, surface area, and porosity, achieving a high surface area of 113 m<sup>2</sup> g<sup>-1</sup> for derived P-CuO. Furthermore, the P-CuO<sub><i>x</i></sub> materials exhibited strong visible-light absorption, highlighting their potential for solar energy harvesting applications. This approach opens opportunities for designing advanced materials with customized performance characteristics. The findings have broad applicability and enable the research community to fully exploit MOF-derived oxides for designing advanced materials with customized properties for diverse applications, including energy, sensing, and biomedical.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Manipulating key intermediates and suppressing the hydrogen evolution reaction <i>via</i> dual roles of Bi for high-efficiency nitrate to ammonia and energy conversion.","authors":"Chunming Yang, Tingting Wei, Chuantao Wang, Feng Yue, Xiang Li, Huijuan Pang, Xueyan Zheng, Yantu Zhang, Feng Fu","doi":"10.1039/d4mh01133c","DOIUrl":"https://doi.org/10.1039/d4mh01133c","url":null,"abstract":"<p><p>The nitrate reduction reaction (NO<sub>3</sub>RR) is a promising technology for simultaneous treatment of NO<sub>3</sub><sup>-</sup> wastewater and synthetic ammonia. However, the NO<sub>3</sub>RR involves multiple electron and proton transfer processes, and the ammonia selectivity and yield are highly susceptible to the evolution of key intermediate (*NO<sub>2</sub>) and the competing hydrogen evolution reaction (HER). In this study, bismuth (Bi), with a high hydrogen overpotential, is used as an inhibitor of the HER. Meanwhile, the Bi doping CoS<sub>2</sub> (Bi-CoS<sub>2</sub>) can refine the d-band center of CoS<sub>2</sub>, which optimizes the adsorption of *NO<sub>2</sub>, reduces the accumulation of NO<sub>2</sub><sup>-</sup> on the surface of the catalyst and then releases more active sites, thereby enhancing the NO<sub>3</sub>RR activity. This viewpoint is verified by experimental results, density functional theory (DFT) calculations and <i>in situ</i> Raman. Benefitting from the dual roles of Bi, Bi-CoS<sub>2</sub> exhibits a highest NH<sub>3</sub> Faraday Faradaic efficiency (FE) of 87.18%, an ammonia yield rate of 944.64 μg h<sup>-1</sup> cm<sup>-1</sup> and long-term stability at -0.2 V <i>versus</i> the reversible hydrogen electrode (RHE). Furthermore, an assembled Zn-NO<sub>3</sub><sup>-</sup> battery can reach a maximum power density of 16.3 mW cm<sup>-2</sup> and high FE<sub>NH<sub>3</sub></sub> of 95.76%, providing a high-efficiency multifunctional system for nitrate to ammonia and energy conversion.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuanliang Chen, Lianhu Xiong, Xuezhong Zhang, Ke Tian, Zijian Dai, Qiang Fu and Hua Deng
{"title":"Gradient heating induced better balance among water transportation, salt resistance and heat supply in a high performance multi-functional solar-thermal desalination device†","authors":"Chuanliang Chen, Lianhu Xiong, Xuezhong Zhang, Ke Tian, Zijian Dai, Qiang Fu and Hua Deng","doi":"10.1039/D3MH01105D","DOIUrl":"10.1039/D3MH01105D","url":null,"abstract":"<p >Solar-driven desalination (SDD) is a promising technology for addressing water scarcity. However, how to overcome the trade-off between water transportation and heat supply of the evaporator to achieve a high evaporation rate and good salt tolerance simultaneously remains a challenge. Here, a novel all-in-one multi-functional SDD evaporator undergoing gradient heating is used. This evaporator incorporates a hydrophilic PDA (polydopamine)@CNT(carbon nanotube)/PVA (polyvinyl alcohol) aerogel with vertically aligned structures as the water evaporation layer, enabling rapid water transportation. Surrounding the evaporation layer, there is a photothermal hydrophobic CCP (cotton/CNT/polydimethylsiloxane) film that serves as the heating layer, enhancing the heat supply to the evaporation layer. This innovative design strikes a favorable balance between water transportation and heat supply, facilitating high evaporation rates and good salt tolerance simultaneously, while also maximizing electricity generation. Due to the wettability difference between the evaporation layer (PVA aerogel) and heating layer (CCP film), a record stable temperature gradient of nearly 70 °C was formed between the CCP film and the PVA aerogel under 1 sun irradiation, so that heat on the high-temperature CCP film was continuously transferred to the low-temperature aerogel through its thermal conductive network, leading to a high evaporation rate of 6.96 kg m<small><sup>−2</sup></small> h<small><sup>−1</sup></small> under 1 sun irradiation in 5.0 wt% sodium chloride (NaCl) brine (higher than the world average seawater salinity (3.5 wt%)). Meanwhile, high flux directional flow of brine generated 130 mV stable voltage and 120 μA circuit current. Furthermore, the evaporator illustrates good stability for consecutive 7 days of testing and shows industry-leading comprehensive performance of SDD in actual use. More importantly, it was tested in real Bohai seawater under weak natural light, and fresh water generated can meet the recommended daily intake of water for 2.6 households and the simultaneously generated voltage reaches above 60 mV. In addition, the evaporator exhibits good adsorption capacity for heavy metals and dye molecules. This simple and universal solar evaporation structure is suitable for the assembly of gradient thermal structures for most solar thermal materials reported in the literature, which provides a new route for maximizing the use of solar energy for freshwater and electricity generation.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 11","pages":" 5161-5176"},"PeriodicalIF":13.3,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10242285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Takashi Harumoto, Hiroyuki Fujiki, Ji Shi, Yoshio Nakamura and Yuji Sutou
{"title":"Negative differential resistance based on phase transformation†","authors":"Takashi Harumoto, Hiroyuki Fujiki, Ji Shi, Yoshio Nakamura and Yuji Sutou","doi":"10.1039/D3MH00657C","DOIUrl":"10.1039/D3MH00657C","url":null,"abstract":"<p >The negative differential resistance (NDR) device is attracting attention because of its broad potential application in neuromorphic computing and non-volatile memory. However, only a limited range of materials show NDR and, therefore, there is less choice in material selection for NDR devices. Considering this issue, we here demonstrate a novel current controlled NDR device based on phase transformation. To the best of our knowledge, this report is the first experimental demonstration that NDR can be induced by phase transformation. We believe that the impact of this demonstration is very large, as phase transformation is the most common phenomenon in materials and consequently most materials can be reconsidered as possible candidates for NDR devices. The prototype NDR device is constructed using hydrogen absorbing metal palladium (Pd) thin-wire and the phase transformation from metal-hydride to metal is employed for the demonstration. The observed NDR property shows a strong dependence on the current sweep speed. Also, it exhibits no current polarity dependence. Therefore, the NDR device based on phase transformation is significantly different from typical NDR devices such as tunnel diodes and memristors. The prototype NDR device has been found to be very useful for evaluating the hydrogen storage properties of metals. The advantage of this analysis method is that the storage properties can be acquired just by sweeping the applied current. This demonstration offers novel directions for both the development and utilization of NDR devices.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 11","pages":" 5143-5151"},"PeriodicalIF":13.3,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10227355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuanggen Wu, Changyong Cai, Xunqiu Wang, Qiao Zhang, Zhijian Tan, Fenfang Li and Shengyi Dong
{"title":"Bulk and transparent supramolecular glass from evaporation-induced noncovalent polymerization of nucleosides†","authors":"Shuanggen Wu, Changyong Cai, Xunqiu Wang, Qiao Zhang, Zhijian Tan, Fenfang Li and Shengyi Dong","doi":"10.1039/D3MH01220D","DOIUrl":"10.1039/D3MH01220D","url":null,"abstract":"<p >Understanding the nature of glass is one of the most important challenges in chemistry, physics, and materials science. In this study, transparent bulk supramolecular glasses with excellent optical behaviors and good mechanical properties were fabricated <em>via</em> the non-covalent polymerization of nucleosides. Hydrogen bonding is the main driving force in the formation of bulk supramolecular glasses. The directional and saturated character of hydrogen bonding enables the formation of a short-range ordered structure, while the weak nature and reversibility of hydrogen bonds allow for the asymmetric and random connections of the short-range ordered structure into a long-range disordered network. Various relaxations, including β, γ, and δ relaxations, are observed at temperatures below the glass transition temperature, demonstrating the metastable nature of bulk supramolecular glasses. This investigation offers supramolecular insights into the nature of glass materials.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 11","pages":" 5152-5160"},"PeriodicalIF":13.3,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10226826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}