限制聚合:多维调节,先进的测量和前沿的应用。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lushan Sun, Jian Sun, Mingqiong Tong, Yanyan Zhao, Xiangling Gu
{"title":"限制聚合:多维调节,先进的测量和前沿的应用。","authors":"Lushan Sun, Jian Sun, Mingqiong Tong, Yanyan Zhao, Xiangling Gu","doi":"10.1039/d5mh01075f","DOIUrl":null,"url":null,"abstract":"<p><p>Confined polymerization, as an innovative polymerization strategy, achieves precise control over the reaction pathway and microscopic structure of the product by confining the polymerization reaction within the physical space of a micro-nano scale. Compared with traditional large-scale or solution polymerization, confined polymerization is carried out in confined spaces, such as nanochannels, layered intermediate layers, or porous material pores, significantly altering properties such as the polymerization rate, molecular weight distribution, glass transition temperature, and product morphology. This review systematically classifies the limited-domain polymerization strategies in different dimensional spaces, clarifies their mechanism differences, and emphasizes the progress in characterisation techniques, including <i>in situ</i> microscopy, spectroscopy, and computational simulation. Additionally, we discuss confined polymerization in cutting-edge applications, such as water purification, medical diagnosis and treatment, energy storage, catalysis, and composite coatings. By combining fundamental principles with functional innovation, we identify the key challenges, such as real-time mechanism detection and scalable synthesis, and propose future directions, including dynamic limitations, biomimetic design, and AI-driven optimization. The aim of this article is to stimulate the attention of more scholars to the field of confined polymerization, thereby accelerating breakthrough progress in this field and providing innovative material solutions for global challenges such as climate change, disease treatment, and clean energy.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confined polymerization: multidimensional regulation, advanced measurements and cutting-edge applications.\",\"authors\":\"Lushan Sun, Jian Sun, Mingqiong Tong, Yanyan Zhao, Xiangling Gu\",\"doi\":\"10.1039/d5mh01075f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Confined polymerization, as an innovative polymerization strategy, achieves precise control over the reaction pathway and microscopic structure of the product by confining the polymerization reaction within the physical space of a micro-nano scale. Compared with traditional large-scale or solution polymerization, confined polymerization is carried out in confined spaces, such as nanochannels, layered intermediate layers, or porous material pores, significantly altering properties such as the polymerization rate, molecular weight distribution, glass transition temperature, and product morphology. This review systematically classifies the limited-domain polymerization strategies in different dimensional spaces, clarifies their mechanism differences, and emphasizes the progress in characterisation techniques, including <i>in situ</i> microscopy, spectroscopy, and computational simulation. Additionally, we discuss confined polymerization in cutting-edge applications, such as water purification, medical diagnosis and treatment, energy storage, catalysis, and composite coatings. By combining fundamental principles with functional innovation, we identify the key challenges, such as real-time mechanism detection and scalable synthesis, and propose future directions, including dynamic limitations, biomimetic design, and AI-driven optimization. The aim of this article is to stimulate the attention of more scholars to the field of confined polymerization, thereby accelerating breakthrough progress in this field and providing innovative material solutions for global challenges such as climate change, disease treatment, and clean energy.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh01075f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh01075f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

限制聚合是一种创新的聚合策略,通过将聚合反应限制在微纳尺度的物理空间内,实现对反应途径和产物微观结构的精确控制。与传统的大规模聚合或溶液聚合相比,密闭聚合在纳米通道、层状中间层或多孔材料孔隙等密闭空间中进行,显著改变了聚合速率、分子量分布、玻璃化转变温度和产物形貌等性能。本文系统地对不同维度空间的有限域聚合策略进行了分类,阐明了它们的机理差异,并强调了表征技术的进展,包括原位显微镜,光谱学和计算模拟。此外,我们还讨论了限制性聚合在水净化、医疗诊断和治疗、能量储存、催化和复合涂层等前沿应用中的应用。通过将基本原理与功能创新相结合,我们确定了关键挑战,如实时机制检测和可扩展合成,并提出了未来的方向,包括动态限制、仿生设计和人工智能驱动优化。本文旨在激发更多学者对密闭聚合领域的关注,从而加速该领域的突破性进展,为气候变化、疾病治疗、清洁能源等全球性挑战提供创新的材料解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Confined polymerization: multidimensional regulation, advanced measurements and cutting-edge applications.

Confined polymerization, as an innovative polymerization strategy, achieves precise control over the reaction pathway and microscopic structure of the product by confining the polymerization reaction within the physical space of a micro-nano scale. Compared with traditional large-scale or solution polymerization, confined polymerization is carried out in confined spaces, such as nanochannels, layered intermediate layers, or porous material pores, significantly altering properties such as the polymerization rate, molecular weight distribution, glass transition temperature, and product morphology. This review systematically classifies the limited-domain polymerization strategies in different dimensional spaces, clarifies their mechanism differences, and emphasizes the progress in characterisation techniques, including in situ microscopy, spectroscopy, and computational simulation. Additionally, we discuss confined polymerization in cutting-edge applications, such as water purification, medical diagnosis and treatment, energy storage, catalysis, and composite coatings. By combining fundamental principles with functional innovation, we identify the key challenges, such as real-time mechanism detection and scalable synthesis, and propose future directions, including dynamic limitations, biomimetic design, and AI-driven optimization. The aim of this article is to stimulate the attention of more scholars to the field of confined polymerization, thereby accelerating breakthrough progress in this field and providing innovative material solutions for global challenges such as climate change, disease treatment, and clean energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信