A data-driven approach to interfacial polymerization exploiting machine learning for predicting thin-film composite membrane formation.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Gergo Ignacz, Muhammad Irshad Baig, Karuppasamy Gopalsamy, Andres Villa, Suzana Nunes, Bernard Ghanem, Tejus Shastry, Sanat K Kumar, Gyorgy Szekely
{"title":"A data-driven approach to interfacial polymerization exploiting machine learning for predicting thin-film composite membrane formation.","authors":"Gergo Ignacz, Muhammad Irshad Baig, Karuppasamy Gopalsamy, Andres Villa, Suzana Nunes, Bernard Ghanem, Tejus Shastry, Sanat K Kumar, Gyorgy Szekely","doi":"10.1039/d5mh01420d","DOIUrl":null,"url":null,"abstract":"<p><p>Polymeric thin-film membranes prepared by interfacial polymerization are the cornerstone of liquid separation, with the potential to reduce industrial waste and energy consumption. However, the limited diversity of monomers may hinder further development by restricting the accessible chemical space. To address this, we propose a divide & conquer approach for the interfacial polymerization membrane development pipeline. We constructed a dataset using 18 organic- and 73 water-phase monomers, conducting 1246 interfacial reactions and analyzing membranes <i>via</i> AFM and optical microscopy. This unprecedentedly large and open access dataset marks a considerable step toward data-driven thin-film membrane development. We trained five machine learning models on molecular structures and density functional theory calculations to study film formation parameters and their binary outcomes. The results indicate that film formation can be predicted directly from monomers, facilitating the potential of data-driven membrane development. Our work shifts the focus from performance prediction to the fundamental step of thin-film formation, offering a new perspective in data-driven membrane research.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh01420d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymeric thin-film membranes prepared by interfacial polymerization are the cornerstone of liquid separation, with the potential to reduce industrial waste and energy consumption. However, the limited diversity of monomers may hinder further development by restricting the accessible chemical space. To address this, we propose a divide & conquer approach for the interfacial polymerization membrane development pipeline. We constructed a dataset using 18 organic- and 73 water-phase monomers, conducting 1246 interfacial reactions and analyzing membranes via AFM and optical microscopy. This unprecedentedly large and open access dataset marks a considerable step toward data-driven thin-film membrane development. We trained five machine learning models on molecular structures and density functional theory calculations to study film formation parameters and their binary outcomes. The results indicate that film formation can be predicted directly from monomers, facilitating the potential of data-driven membrane development. Our work shifts the focus from performance prediction to the fundamental step of thin-film formation, offering a new perspective in data-driven membrane research.

一种数据驱动的界面聚合方法,利用机器学习预测薄膜复合膜的形成。
通过界面聚合制备的聚合物薄膜是液体分离的基石,具有减少工业废物和能源消耗的潜力。然而,单体的有限多样性可能会限制可获得的化学空间,从而阻碍进一步的发展。为了解决这个问题,我们提出了一种分而治之的方法来开发界面聚合膜。我们使用18种有机相和73种水相单体构建了一个数据集,进行了1246个界面反应,并通过原子力显微镜和光学显微镜分析了膜。这个前所未有的大型开放数据集标志着数据驱动的薄膜发展迈出了相当大的一步。我们训练了5个基于分子结构和密度泛函理论计算的机器学习模型来研究薄膜形成参数及其二元结果。结果表明,膜的形成可以直接从单体预测,促进了数据驱动膜发展的潜力。我们的工作将重点从性能预测转移到薄膜形成的基本步骤,为数据驱动的膜研究提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信