石墨烯及其类似物对向列液晶影响的关键概述。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pragnya Satapathy, Gayathri R Pisharody, D S Shankar Rao, H S S Ramakrishna Matte, S Krishna Prasad
{"title":"石墨烯及其类似物对向列液晶影响的关键概述。","authors":"Pragnya Satapathy, Gayathri R Pisharody, D S Shankar Rao, H S S Ramakrishna Matte, S Krishna Prasad","doi":"10.1039/d5mh01230a","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) materials and liquid crystals (LCs) originate from opposite ends of the materials spectrum, with both recognized for several sought-after properties. In line with current trends in materials science, LCs have progressively entered the realm of nanocomposites, creating new vistas for LC-based applications. Although there is considerable research on these nano-soft composites, the nano-component has predominantly been of zero- and one-dimensional nature, and integration of 2D materials into the field is an appealing upcoming research area. This review outlines such endeavours, describing the influence of 2D materials on both thermotropic and lyotropic LCs, primarily focussing on the nematic mesophase, the orientationally ordered liquid. Sections on both these LCs begin with the theoretical efforts and experimental findings on several physical properties of the 2D materials forming the LCs, or incorporated into nematics in the bulk and upon confinement in a polymer matrix, or as substrate layers for uniform orientation of the nematic director. Various applications, including the bio-related ones, are also described. Finally, we outline potential pathways along which the domain of 2D materials in LCs might advance by addressing the perceived challenges. The interspersed critical comments on the research reported aim to encourage researchers to enrich the field with comprehensive efforts.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A critical overview of the influence of graphene and its analogues on nematic liquid crystals.\",\"authors\":\"Pragnya Satapathy, Gayathri R Pisharody, D S Shankar Rao, H S S Ramakrishna Matte, S Krishna Prasad\",\"doi\":\"10.1039/d5mh01230a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-dimensional (2D) materials and liquid crystals (LCs) originate from opposite ends of the materials spectrum, with both recognized for several sought-after properties. In line with current trends in materials science, LCs have progressively entered the realm of nanocomposites, creating new vistas for LC-based applications. Although there is considerable research on these nano-soft composites, the nano-component has predominantly been of zero- and one-dimensional nature, and integration of 2D materials into the field is an appealing upcoming research area. This review outlines such endeavours, describing the influence of 2D materials on both thermotropic and lyotropic LCs, primarily focussing on the nematic mesophase, the orientationally ordered liquid. Sections on both these LCs begin with the theoretical efforts and experimental findings on several physical properties of the 2D materials forming the LCs, or incorporated into nematics in the bulk and upon confinement in a polymer matrix, or as substrate layers for uniform orientation of the nematic director. Various applications, including the bio-related ones, are also described. Finally, we outline potential pathways along which the domain of 2D materials in LCs might advance by addressing the perceived challenges. The interspersed critical comments on the research reported aim to encourage researchers to enrich the field with comprehensive efforts.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh01230a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh01230a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)材料和液晶(lc)来自材料光谱的两端,两者都具有一些受欢迎的特性。随着当前材料科学的发展趋势,lc已经逐步进入纳米复合材料领域,为基于lc的应用创造了新的前景。虽然对这些纳米软复合材料的研究相当多,但纳米成分主要是零维和一维性质,将二维材料集成到该领域是一个很有吸引力的未来研究领域。这篇综述概述了这些努力,描述了二维材料对热致性和溶致性LCs的影响,主要集中在向列相中间阶段,取向有序的液体。关于这两种lc的部分从理论努力和实验发现开始,这些发现是关于形成lc的二维材料的几种物理性质,或者在块体中与聚合物基体中的向列相结合,或者作为向列导向均匀取向的基板层。还介绍了各种应用,包括与生物相关的应用。最后,我们概述了通过解决感知到的挑战,在LCs中二维材料领域可能向前发展的潜在途径。对所报道的研究进行零星的批评,目的是鼓励研究人员以全面的努力来丰富这一领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A critical overview of the influence of graphene and its analogues on nematic liquid crystals.

Two-dimensional (2D) materials and liquid crystals (LCs) originate from opposite ends of the materials spectrum, with both recognized for several sought-after properties. In line with current trends in materials science, LCs have progressively entered the realm of nanocomposites, creating new vistas for LC-based applications. Although there is considerable research on these nano-soft composites, the nano-component has predominantly been of zero- and one-dimensional nature, and integration of 2D materials into the field is an appealing upcoming research area. This review outlines such endeavours, describing the influence of 2D materials on both thermotropic and lyotropic LCs, primarily focussing on the nematic mesophase, the orientationally ordered liquid. Sections on both these LCs begin with the theoretical efforts and experimental findings on several physical properties of the 2D materials forming the LCs, or incorporated into nematics in the bulk and upon confinement in a polymer matrix, or as substrate layers for uniform orientation of the nematic director. Various applications, including the bio-related ones, are also described. Finally, we outline potential pathways along which the domain of 2D materials in LCs might advance by addressing the perceived challenges. The interspersed critical comments on the research reported aim to encourage researchers to enrich the field with comprehensive efforts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信