Materials Horizons最新文献

筛选
英文 中文
Materials Horizons Emerging Investigator Series: Dr Muhammad Zubair and Dr Muhammad Qasim Mehmood, Information Technology University of the Punjab, Pakistan 材料地平线新兴研究者系列:巴基斯坦旁遮普信息技术大学 Muhammad Zubair 博士和 Muhammad Qasim Mehmood 博士。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-11-05 DOI: 10.1039/D4MH90111H
{"title":"Materials Horizons Emerging Investigator Series: Dr Muhammad Zubair and Dr Muhammad Qasim Mehmood, Information Technology University of the Punjab, Pakistan","authors":"","doi":"10.1039/D4MH90111H","DOIUrl":"10.1039/D4MH90111H","url":null,"abstract":"<p >Our Emerging Investigator Series features exceptional work by early-career researchers working in the field of materials science.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 23","pages":" 5812-5814"},"PeriodicalIF":12.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chiral helix amplification and enhanced bioadhesion of two-component low molecular weight hydrogels regulated by OH to eradicate MRSA biofilms. 双组分低分子量水凝胶的手性螺旋放大和增强的生物粘附性受 OH 调节,可消除 MRSA 生物膜。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-11-05 DOI: 10.1039/d4mh01213e
Zhijia Wang, Tong Li, Xuemei Huang, Ran Xu, Yihang Zhao, Jichang Wei, Wenmin Pi, Shuchang Yao, Jihui Lu, Xiang Zhang, Haimin Lei, Penglong Wang
{"title":"Chiral helix amplification and enhanced bioadhesion of two-component low molecular weight hydrogels regulated by OH to eradicate MRSA biofilms.","authors":"Zhijia Wang, Tong Li, Xuemei Huang, Ran Xu, Yihang Zhao, Jichang Wei, Wenmin Pi, Shuchang Yao, Jihui Lu, Xiang Zhang, Haimin Lei, Penglong Wang","doi":"10.1039/d4mh01213e","DOIUrl":"10.1039/d4mh01213e","url":null,"abstract":"<p><p>The supramolecular chemistry of small chiral molecules has attracted widespread attention owing to their similarity to natural assembly codes. Two-component low-molecular-weight (LMW) hydrogels are crucial as they form helical structures <i>via</i> chirality transfer, enabling diverse functions. Herein, we report a pair of two-component chiral LMW hydrogels based on the small molecular drugs baicalin (BA), scutellarin (SCU) and berberine (BBR). The two hydrogels exhibited different helicities and abilities to adhere to methicillin-resistant <i>staphylococcus aureus</i> (MRSA) biofilms. The BA or SCU can each laterally interact with BBR in a tail-to-tail configuration, forming a stable hydrophobic structure, while hydrophilic glucuronide groups are exposed to a water solution to form a hydrogel. However, the tiny variant steric hindrance of the terminal OH moiety of SCU affects π-π stacking in the layered assembly, resulting in SCU-BBR having much stronger chirality deviation and supramolecular chirality amplification than BA-BBR. Thereafter, the OH group in SCU-BBR forms more intermolecular hydrogen bonds with MRSA biofilms, enhancing stronger adhesion and better scavenging effects than BA-BBR. This work provides a unique chiral supramolecular assembly pattern, expands the antibacterial application prospect of a two-component LMW hydrogel accompanying chirality amplification, and provides a new perspective and strategy for biofilm removal.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct growth of ferroelectric orthorhombic ZrO2 on Ru by atomic layer deposition at 300 °C. 在 300 °C 下通过原子层沉积在 Ru 上直接生长铁电正交菱形 ZrO2。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-11-05 DOI: 10.1039/d4mh01119h
Myeongchan Ko, Ji Su Park, Soyun Joo, Seungbum Hong, Jong Min Yuk, Kyung Min Kim
{"title":"Direct growth of ferroelectric orthorhombic ZrO<sub>2</sub> on Ru by atomic layer deposition at 300 °C.","authors":"Myeongchan Ko, Ji Su Park, Soyun Joo, Seungbum Hong, Jong Min Yuk, Kyung Min Kim","doi":"10.1039/d4mh01119h","DOIUrl":"10.1039/d4mh01119h","url":null,"abstract":"<p><p>Fluorite-structured binary oxide ferroelectrics exhibit robust ferroelectricity at a thickness below 10 nm, making them highly scalable and applicable for high-end semiconductor devices. Despite this promising prospect, achieving highly reliable ferroelectrics still demands a significant thermal budget to form a ferroelectric phase, being a hurdle for their use in high-end complementary metal oxide semiconductor (CMOS) processing. Here, we report a robust ferroelectric behavior of an 8 nm-thick ZrO<sub>2</sub> film deposited <i>via</i> plasma-enhanced atomic layer deposition at 300 °C on a (002)-oriented Ru without any post-annealing process, demonstrating high compatibility with CMOS processing. We propose that a plausible mechanism for this is the local domain matching epitaxy based on the high-resolution transmission electron microscopy and piezoelectric force microscopy results, where the templating effect between [101]-oriented grains of orthorhombic ZrO<sub>2</sub> and [010]-oriented grains of Ru enables the direct growth of ferroelectric ZrO<sub>2</sub>. The 2<i>P</i><sub>r</sub> value is 20 μC cm<sup>-2</sup>, and it can be further improved by post-annealing at 400 °C to 23 μC cm<sup>-2</sup> without showing the wake-up behavior. Ferroelectric switching shows stable endurance for up to 10<sup>9</sup> cycles, showcasing its high potential in CMOS-compatible applications and nanoelectronics with a low thermal budget.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation of perovskite thin layer crystallization with varying evaporation rates. 模拟不同蒸发率下的包光体薄层结晶。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-11-04 DOI: 10.1039/d4mh00957f
M Majewski, S Qiu, O Ronsin, L Lüer, V M Le Corre, T Du, C J Brabec, H-J Egelhaaf, J Harting
{"title":"Simulation of perovskite thin layer crystallization with varying evaporation rates.","authors":"M Majewski, S Qiu, O Ronsin, L Lüer, V M Le Corre, T Du, C J Brabec, H-J Egelhaaf, J Harting","doi":"10.1039/d4mh00957f","DOIUrl":"10.1039/d4mh00957f","url":null,"abstract":"<p><p>Perovskite solar cells (PSC) are promising potential competitors to established photovoltaic technologies due to their superior efficiency and low-cost solution processability. However, the limited understanding of the crystallization behaviour hinders the technological transition from lab-scale cells to modules. In this work, advanced phase field (PF) simulations of solution-based film formation are used for the first time to obtain mechanistic and morphological information that is experimentally challenging to access. The well-known transition from a film with many pinholes, for a low evaporation rate, to a smooth film, for high evaporation rates, is recovered in simulation and experiment. The simulation results provide us with an unprecedented understanding of the crystallization process. They show that supersaturation and crystallization confinement effects determine the final morphology. The ratio of evaporation to crystallization rates turns out to be the key parameter driving the final morphology. Increasing this ratio is a robust design rule for obtaining high-quality films, which we expect to be valid independently of the material type.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stretchable hierarchical metal wire networks for neuromorphic emulation of nociception and anti-nociception. 用于神经形态模拟痛觉和反痛觉的可拉伸分层金属丝网络。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-11-04 DOI: 10.1039/d4mh01208a
Bhupesh Yadav, Indrajit Mondal, Manpreet Kaur, Vidhyadhiraja N S, Giridhar U Kulkarni
{"title":"Stretchable hierarchical metal wire networks for neuromorphic emulation of nociception and anti-nociception.","authors":"Bhupesh Yadav, Indrajit Mondal, Manpreet Kaur, Vidhyadhiraja N S, Giridhar U Kulkarni","doi":"10.1039/d4mh01208a","DOIUrl":"10.1039/d4mh01208a","url":null,"abstract":"<p><p>Among biomimetic technologies, the incorporation of sensory hardware holds exceptional utility in human-machine interfacing. In this context, devices receptive to nociception and emulating antinociception gain significance as part of pain management. Here we report, a stretchable two-terminal resistive neuromorphic device consisting of a hierarchical Ag microwire network formed using a crack templating protocol. The device demonstrates sensitivity to strain, where the application of strain induces the formation of gaps across active elements, rendering the device electrically open. Following activation by voltage pulses, the device exhibits potentiated states with finite retentions arising from filamentary growth across these gaps due to field migration. Remarkably, the strain-induced functioning alongside controllable gaps enables achieving user-controlled neuromorphic properties, desired for self-adaptive intelligent systems. Interestingly, in the neuromorphic potentiated state, the response to strain is enhanced by ∼10<sup>6</sup> due to higher sensitivities associated with nanofilaments. The device emulates basic neuromorphic functionalities such as threshold switching, and short-term (STP) and long-term potentiations (LTP). Furthermore, the sensitivity has been exploited in mimicking nociception through strain-induced changes in the potentiated state. Interestingly, repetition of the strain stimulus leads to endurance making the device restore its conductance, thereby emulating adaptation and habituation representing the antinociceptive behavior.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic polarons reach a hundred thousand Bohr magnetons. 磁极子达到十万个玻尔磁子。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-11-04 DOI: 10.1039/d4mh01156b
Pavel A Usachev, Vladimir N Kats, Leonid A Shelukhin, Victor V Pavlov, Dmitry V Averyanov, Ivan S Sokolov, Oleg E Parfenov, Oleg A Kondratev, Alexander N Taldenkov, Alexander V Inyushkin, Andrey M Tokmachev, Vyacheslav G Storchak
{"title":"Magnetic polarons reach a hundred thousand Bohr magnetons.","authors":"Pavel A Usachev, Vladimir N Kats, Leonid A Shelukhin, Victor V Pavlov, Dmitry V Averyanov, Ivan S Sokolov, Oleg E Parfenov, Oleg A Kondratev, Alexander N Taldenkov, Alexander V Inyushkin, Andrey M Tokmachev, Vyacheslav G Storchak","doi":"10.1039/d4mh01156b","DOIUrl":"10.1039/d4mh01156b","url":null,"abstract":"<p><p>The ability of light to manipulate fundamental interactions in a medium is central to research in optomagnetism and applications in electronics. A prospective approach is to create composite quasiparticles, magnetic polarons, highly susceptible to external stimuli. To control magnetic and transport properties by weak magnetic and electric fields, it is important to find materials that support photoinduced magnetic polarons with colossal net magnetic moments. Here, we demonstrate that magnetic polarons with a record-high magnetic moment, reaching and exceeding a hundred thousand Bohr magnetons, can be optically generated in EuO, an archetypal ferromagnetic semiconductor. The phenomenon is established employing the photoinduced Faraday effect studied in EuO films by a two-color pump-probe technique. The giant magnetic polarons are generated just above the Curie temperature once EuO is exposed to photons of an energy exceeding the bandgap. Picosecond temporal dynamics of magnetic polarons follows relaxation processes in the spin-split 5d conduction band occupied by the photoexcited electron. The study is expected to provide a platform for implementation of an efficient optical control over the magnetic state in solids.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput development of tough metallic glass films. 高通量开发坚韧的金属玻璃薄膜。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-11-04 DOI: 10.1039/d4mh00815d
Yuzhou Wu, Yue Huang, Yebei Wang, Fuchao Wang, Yunhe Gao, Yingying Sun, Meichen Jian, Lijian Song, Yu Tong, Yan Zhang, Chao Wang, Yanhui Liu, Jun-Qiang Wang, Juntao Huo, Meng Gao
{"title":"High-throughput development of tough metallic glass films.","authors":"Yuzhou Wu, Yue Huang, Yebei Wang, Fuchao Wang, Yunhe Gao, Yingying Sun, Meichen Jian, Lijian Song, Yu Tong, Yan Zhang, Chao Wang, Yanhui Liu, Jun-Qiang Wang, Juntao Huo, Meng Gao","doi":"10.1039/d4mh00815d","DOIUrl":"10.1039/d4mh00815d","url":null,"abstract":"<p><p>Fast development of metallic glass films with high toughness has been a long-sought goal of humankind in view of their superior properties and great potential for application in the field of soft electronics. However, until now, there has been no effective experimental strategy because of the lack of suitable and precise toughness measurement technology. In the present work, we introduced a feasible route for developing tough metallic glass films using combinatorial material library preparation and high-throughput toughness measurement <i>via</i> nanoindentation. Based on this route, tough metallic glass films for the quaternary Zr-Ti-Cu-Al system were successfully screened out. The corresponding electron work function map was detected to uncover the physical mechanism for the composition dependence of toughness. In addition, the preliminary assessments of the screened tough metallic glass films as strain-sensing materials were also conducted. Our current research not only provides a versatile toolbox for high-throughput development of tough metallic glass films, but also exemplifies their potential as strain-sensing materials.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spider-silk inspired ultrafast alkali-induced molecular aggregation for 3D printing arbitrary tubular hydrogels. 用于 3D 打印任意管状水凝胶的蜘蛛丝灵感超快碱诱导分子聚集。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-11-04 DOI: 10.1039/d4mh01291g
Yang Lyu, Zhongying Ji, Di Liu, Xinqiang Xu, Rui Guo, Xinyan Shi, Xiaolong Wang
{"title":"Spider-silk inspired ultrafast alkali-induced molecular aggregation for 3D printing arbitrary tubular hydrogels.","authors":"Yang Lyu, Zhongying Ji, Di Liu, Xinqiang Xu, Rui Guo, Xinyan Shi, Xiaolong Wang","doi":"10.1039/d4mh01291g","DOIUrl":"10.1039/d4mh01291g","url":null,"abstract":"<p><p>Fabricating tubular hydrogel models with arbitrary structural complexity and controllable diameters using an ultrafast, facile yet universal method is desirable for vascular prototypes yet still a great challenge. Herein, inspired by the denaturing ability of spider silks, a novel strategy to induce complexation <i>via</i> applying highly concentrated alkali into a polyvinyl alcohol/ionic liquid (PVA/IL) solution, <i>i.e.</i>, alkali-induced molecular aggregation (AMA), is proposed to achieve such purpose. This strategy enables the rapid and facile fabrication of tubular hydrogel architectures with tunable diameters, controllable thicknesses, and excellent mechanical performance with a tensile strength of up to 1.1 MPa and stretchability exceeding 600%. Importantly, this novel strategy combined with 3D printing facilitates the rapid fabrication of a variety of precise tubular hydrogel models with connected cavity structures which are difficult to achieve using current methods. This ultrafast solidification strategy could also be extended to various alkalis, cations and anions to build different hydrogels, showcasing its versatility and universality. Hence, this strategy can be pioneering to rapidly fabricate complex three-dimensional and hollow enclosed hydrogel models for simulating endovascular interventional therapy.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic color-changing and conductive photonic cellulose nanocrystal patches for sweat sensing with biodegradability and biocompatibility. 具有生物降解性和生物兼容性的用于汗液传感的协同变色和导电光子纤维素纳米晶体贴片。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-11-01 DOI: 10.1039/d4mh01148a
Yi Qian, Hao Wang, Zhen Qu, Qiongya Li, Dongdong Wang, Xindi Yang, Haijuan Qin, Haijie Wei, Fusheng Zhang, Guangyan Qing
{"title":"Synergistic color-changing and conductive photonic cellulose nanocrystal patches for sweat sensing with biodegradability and biocompatibility.","authors":"Yi Qian, Hao Wang, Zhen Qu, Qiongya Li, Dongdong Wang, Xindi Yang, Haijuan Qin, Haijie Wei, Fusheng Zhang, Guangyan Qing","doi":"10.1039/d4mh01148a","DOIUrl":"10.1039/d4mh01148a","url":null,"abstract":"<p><p>Given the ongoing requirements for versatility, sustainability, and biocompatibility in wearable applications, cellulose nanocrystal (CNC) photonic materials emerge as excellent candidates for multi-responsive wearable devices due to their tunable structural color, strong electron-donating capacity, and renewable nature. Nonetheless, most CNC-derived materials struggle to incorporate color-changing and electrical sensing into one system since the self-assembly of CNCs is incompatible with conventional conductive mediums. Here we report the design of a conductive photonic patch through constructing a CNC/polyvinyl alcohol hydrogel modulated by phytic acid (PA). The introduction of PA significantly enhances the hydrogen bonding interaction, resulting in the composite film with impressive flexibility (1.4 MJ m<sup>-3</sup>) and progressive color changes from blue, green, yellow, to ultimately red upon sweat wetting. Interestingly, this system simultaneously demonstrates selective and sensitive electrical sensing functions, as well as satisfactory biocompatibility, biodegradability, and breathability. Importantly, a proof-of-concept demonstration of a skin-adhesive patch is presented, where the optical and electrical dual-signal sweat sensing allows for intuitive visual and multimode electric localization of sweat accumulation during physical exercises. This innovative interactive strategy for monitoring human metabolites could offer a fresh perspective into the design of wearable health-sensing devices, while greatly expanding the applications of CNC-based photonic materials in medicine-related fields.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional antimicrobial peptide-loaded 3D scaffolds for infected bone defect treatment with AI and multidimensional printing. 利用人工智能和多维打印技术治疗感染性骨缺损的功能性抗菌肽负载三维支架。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-11-01 DOI: 10.1039/d4mh01124d
Mengmeng Li, Peizhang Zhao, Jingwen Wang, Xincai Zhang, Jun Li
{"title":"Functional antimicrobial peptide-loaded 3D scaffolds for infected bone defect treatment with AI and multidimensional printing.","authors":"Mengmeng Li, Peizhang Zhao, Jingwen Wang, Xincai Zhang, Jun Li","doi":"10.1039/d4mh01124d","DOIUrl":"10.1039/d4mh01124d","url":null,"abstract":"<p><p>Infection is the most prevalent complication of fractures, particularly in open fractures, and often leads to severe consequences. The emergence of bacterial resistance has significantly exacerbated the burden of infection in clinical practice, making infection control a significant treatment challenge for infectious bone defects. The implantation of a structural stent is necessary to treat large bone defects despite the increased risk of infection. Therefore, there is a need for the development of novel antibacterial therapies. The advancement in antibacterial biomaterials and new antimicrobial drugs offers fresh perspectives on antibacterial treatment. Although antimicrobial 3D scaffolds are currently under intense research focus, relying solely on material properties or antibiotic action remains insufficient. Antimicrobial peptides (AMPs) are one of the most promising new antibacterial therapy approaches. This review discusses the underlying mechanisms behind infectious bone defects and presents research findings on antimicrobial peptides, specifically emphasizing their mechanisms and optimization strategies. We also explore the potential prospects of utilizing antimicrobial peptides in treating infectious bone defects. Furthermore, we propose that artificial intelligence (AI) algorithms can be utilized for predicting the pharmacokinetic properties of AMPs, including absorption, distribution, metabolism, and excretion, and by combining information from genomics, proteomics, metabolomics, and clinical studies with computational models driven by machine learning algorithms, scientists can gain a comprehensive understanding of AMPs' mechanisms of action, therapeutic potential, and optimizing treatment strategies tailored to individual patients, and through interdisciplinary collaborations between computer scientists, biologists, and clinicians, the full potential of AI in accelerating the discovery and development of novel AMPs will be realized. Besides, with the continuous advancements in 3D/4D/5D/6D technology and its integration into bone scaffold materials, we anticipate remarkable progress in the field of regenerative medicine. This review summarizes relevant research on the optimal future for the treatment of infectious bone defects, provides guidance for future novel treatment strategies combining multi-dimensional printing with new antimicrobial agents, and provides a novel and effective solution to the current challenges in the field of bone regeneration.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信