通过分子载体途径三重工程对谷胱甘肽和热休克蛋白的双靶标调控。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yike Tu, Laiping Fang, Shufang Li, Kuo He, Yanzhao Diao, Lifeng Hang, Lina Wang, Jianan Dai, Ping'an Ma, Guihua Jiang
{"title":"通过分子载体途径三重工程对谷胱甘肽和热休克蛋白的双靶标调控。","authors":"Yike Tu, Laiping Fang, Shufang Li, Kuo He, Yanzhao Diao, Lifeng Hang, Lina Wang, Jianan Dai, Ping'an Ma, Guihua Jiang","doi":"10.1039/d5mh00614g","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) and photothermal therapy (PTT) face efficacy limitations due to overexpressed glutathione (GSH) and activated heat shock proteins (HSPs). Here, we synthesized a multifunctional agent N3-4F (N3) through molecular engineering. Leveraging strong acceptor-donor (A-D) interactions and reduced singlet-triplet energy gap (Δ<i>E</i><sub>S-T</sub>), N3 demonstrated exceptional type I/II reactive oxygen species (ROS) generation. An extended π-conjugated backbone with long alkyl chains enhanced light absorption and conferred a remarkable photothermal conversion efficiency (PCE) of 44.9%. To overcome tumor microenvironmental limitations, we engineered a disulfide bond-integrated nanocarrier and co-delivered HSP inhibitor KNK437 (437), selectively depleting intracellular GSH while disrupting thermoresistance. <i>In vivo</i> studies revealed that N3@437 under 808 nm laser irradiation achieved 94.9% tumor growth inhibition and markedly suppressed lung metastasis. By employing a triple-pronged strategy of molecular engineering, nanocarrier design, and pathway blockage, this work pioneered a paradigm that concurrently depletes GSH and inhibits HSPs. This breakthrough enables enhanced PDT/PTT performance, offering a transformative solution for combating tumor adaptive resistance.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-target regulation of glutathione and heat shock proteins <i>via</i> molecular-carrier-pathway triple-engineering for potentiated phototherapy.\",\"authors\":\"Yike Tu, Laiping Fang, Shufang Li, Kuo He, Yanzhao Diao, Lifeng Hang, Lina Wang, Jianan Dai, Ping'an Ma, Guihua Jiang\",\"doi\":\"10.1039/d5mh00614g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photodynamic therapy (PDT) and photothermal therapy (PTT) face efficacy limitations due to overexpressed glutathione (GSH) and activated heat shock proteins (HSPs). Here, we synthesized a multifunctional agent N3-4F (N3) through molecular engineering. Leveraging strong acceptor-donor (A-D) interactions and reduced singlet-triplet energy gap (Δ<i>E</i><sub>S-T</sub>), N3 demonstrated exceptional type I/II reactive oxygen species (ROS) generation. An extended π-conjugated backbone with long alkyl chains enhanced light absorption and conferred a remarkable photothermal conversion efficiency (PCE) of 44.9%. To overcome tumor microenvironmental limitations, we engineered a disulfide bond-integrated nanocarrier and co-delivered HSP inhibitor KNK437 (437), selectively depleting intracellular GSH while disrupting thermoresistance. <i>In vivo</i> studies revealed that N3@437 under 808 nm laser irradiation achieved 94.9% tumor growth inhibition and markedly suppressed lung metastasis. By employing a triple-pronged strategy of molecular engineering, nanocarrier design, and pathway blockage, this work pioneered a paradigm that concurrently depletes GSH and inhibits HSPs. This breakthrough enables enhanced PDT/PTT performance, offering a transformative solution for combating tumor adaptive resistance.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh00614g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00614g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于谷胱甘肽(GSH)和活化热休克蛋白(HSPs)的过度表达,光动力疗法(PDT)和光热疗法(PTT)面临疗效限制。本文采用分子工程技术合成了一种多功能药剂N3- 4f (N3)。利用强大的受体-供体(A-D)相互作用和减少的单重态-三重态能隙(ΔES-T), N3表现出特殊的I/II型活性氧(ROS)生成。具有长烷基链的扩展π共轭骨架增强了光吸收,光热转换效率(PCE)达到44.9%。为了克服肿瘤微环境的限制,我们设计了一种二硫键集成纳米载体,并共同递送HSP抑制剂KNK437(437),选择性地消耗细胞内GSH,同时破坏耐热性。体内研究表明,N3@437在808 nm激光照射下,肿瘤生长抑制率达到94.9%,并明显抑制肺转移。通过采用分子工程、纳米载体设计和通路阻断三管齐下的策略,这项工作开创了同时消耗谷胱甘肽和抑制热休克蛋白的范例。这一突破增强了PDT/PTT性能,为对抗肿瘤适应性抵抗提供了变革性的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-target regulation of glutathione and heat shock proteins via molecular-carrier-pathway triple-engineering for potentiated phototherapy.

Photodynamic therapy (PDT) and photothermal therapy (PTT) face efficacy limitations due to overexpressed glutathione (GSH) and activated heat shock proteins (HSPs). Here, we synthesized a multifunctional agent N3-4F (N3) through molecular engineering. Leveraging strong acceptor-donor (A-D) interactions and reduced singlet-triplet energy gap (ΔES-T), N3 demonstrated exceptional type I/II reactive oxygen species (ROS) generation. An extended π-conjugated backbone with long alkyl chains enhanced light absorption and conferred a remarkable photothermal conversion efficiency (PCE) of 44.9%. To overcome tumor microenvironmental limitations, we engineered a disulfide bond-integrated nanocarrier and co-delivered HSP inhibitor KNK437 (437), selectively depleting intracellular GSH while disrupting thermoresistance. In vivo studies revealed that N3@437 under 808 nm laser irradiation achieved 94.9% tumor growth inhibition and markedly suppressed lung metastasis. By employing a triple-pronged strategy of molecular engineering, nanocarrier design, and pathway blockage, this work pioneered a paradigm that concurrently depletes GSH and inhibits HSPs. This breakthrough enables enhanced PDT/PTT performance, offering a transformative solution for combating tumor adaptive resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信