Dual-target regulation of glutathione and heat shock proteins via molecular-carrier-pathway triple-engineering for potentiated phototherapy.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yike Tu, Laiping Fang, Shufang Li, Kuo He, Yanzhao Diao, Lifeng Hang, Lina Wang, Jianan Dai, Ping'an Ma, Guihua Jiang
{"title":"Dual-target regulation of glutathione and heat shock proteins <i>via</i> molecular-carrier-pathway triple-engineering for potentiated phototherapy.","authors":"Yike Tu, Laiping Fang, Shufang Li, Kuo He, Yanzhao Diao, Lifeng Hang, Lina Wang, Jianan Dai, Ping'an Ma, Guihua Jiang","doi":"10.1039/d5mh00614g","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) and photothermal therapy (PTT) face efficacy limitations due to overexpressed glutathione (GSH) and activated heat shock proteins (HSPs). Here, we synthesized a multifunctional agent N3-4F (N3) through molecular engineering. Leveraging strong acceptor-donor (A-D) interactions and reduced singlet-triplet energy gap (Δ<i>E</i><sub>S-T</sub>), N3 demonstrated exceptional type I/II reactive oxygen species (ROS) generation. An extended π-conjugated backbone with long alkyl chains enhanced light absorption and conferred a remarkable photothermal conversion efficiency (PCE) of 44.9%. To overcome tumor microenvironmental limitations, we engineered a disulfide bond-integrated nanocarrier and co-delivered HSP inhibitor KNK437 (437), selectively depleting intracellular GSH while disrupting thermoresistance. <i>In vivo</i> studies revealed that N3@437 under 808 nm laser irradiation achieved 94.9% tumor growth inhibition and markedly suppressed lung metastasis. By employing a triple-pronged strategy of molecular engineering, nanocarrier design, and pathway blockage, this work pioneered a paradigm that concurrently depletes GSH and inhibits HSPs. This breakthrough enables enhanced PDT/PTT performance, offering a transformative solution for combating tumor adaptive resistance.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00614g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photodynamic therapy (PDT) and photothermal therapy (PTT) face efficacy limitations due to overexpressed glutathione (GSH) and activated heat shock proteins (HSPs). Here, we synthesized a multifunctional agent N3-4F (N3) through molecular engineering. Leveraging strong acceptor-donor (A-D) interactions and reduced singlet-triplet energy gap (ΔES-T), N3 demonstrated exceptional type I/II reactive oxygen species (ROS) generation. An extended π-conjugated backbone with long alkyl chains enhanced light absorption and conferred a remarkable photothermal conversion efficiency (PCE) of 44.9%. To overcome tumor microenvironmental limitations, we engineered a disulfide bond-integrated nanocarrier and co-delivered HSP inhibitor KNK437 (437), selectively depleting intracellular GSH while disrupting thermoresistance. In vivo studies revealed that N3@437 under 808 nm laser irradiation achieved 94.9% tumor growth inhibition and markedly suppressed lung metastasis. By employing a triple-pronged strategy of molecular engineering, nanocarrier design, and pathway blockage, this work pioneered a paradigm that concurrently depletes GSH and inhibits HSPs. This breakthrough enables enhanced PDT/PTT performance, offering a transformative solution for combating tumor adaptive resistance.

通过分子载体途径三重工程对谷胱甘肽和热休克蛋白的双靶标调控。
由于谷胱甘肽(GSH)和活化热休克蛋白(HSPs)的过度表达,光动力疗法(PDT)和光热疗法(PTT)面临疗效限制。本文采用分子工程技术合成了一种多功能药剂N3- 4f (N3)。利用强大的受体-供体(A-D)相互作用和减少的单重态-三重态能隙(ΔES-T), N3表现出特殊的I/II型活性氧(ROS)生成。具有长烷基链的扩展π共轭骨架增强了光吸收,光热转换效率(PCE)达到44.9%。为了克服肿瘤微环境的限制,我们设计了一种二硫键集成纳米载体,并共同递送HSP抑制剂KNK437(437),选择性地消耗细胞内GSH,同时破坏耐热性。体内研究表明,N3@437在808 nm激光照射下,肿瘤生长抑制率达到94.9%,并明显抑制肺转移。通过采用分子工程、纳米载体设计和通路阻断三管齐下的策略,这项工作开创了同时消耗谷胱甘肽和抑制热休克蛋白的范例。这一突破增强了PDT/PTT性能,为对抗肿瘤适应性抵抗提供了变革性的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信