Muhammad Arif, Xu Liu, Hangwei Jia, Zhihua Yang, Xueling Hou, Shilie Pan
{"title":"Optimizing optical anisotropy in low-dimensional structures <i>via</i> intralayer hydrogen bonding modulation and anionic substitution.","authors":"Muhammad Arif, Xu Liu, Hangwei Jia, Zhihua Yang, Xueling Hou, Shilie Pan","doi":"10.1039/d4mh01790k","DOIUrl":"https://doi.org/10.1039/d4mh01790k","url":null,"abstract":"<p><p>Anisotropy is a fundamental prerequisite for achieving significant birefringence (Δ<i>n</i>) in optical materials, yet optimizing it to surpass the ideal range (Δ<i>n</i> > 0.3) remains a substantial hurdle. In the unabated quest for novel birefringent genes, we have figured out that π-conjugated aminopyrazine, [APZ], is capable of producing low-dimensional linear structures for achieving enhanced birefringence due to their structural diversity and inherent anisotropy. Herein, the systematic substitutions of non-π-conjugated [(H<sub>2</sub>PO<sub>4</sub>)<sup>-</sup> and (BF<sub>4</sub>)<sup>-</sup>] with heteroatom-substituted tetrahedral anions [(CF<sub>3</sub>SO<sub>3</sub>)<sup>-</sup>, (NH<sub>2</sub>SO<sub>3</sub>)<sup>-</sup>, (CH<sub>3</sub>SO<sub>3</sub>)<sup>-</sup>] and subsequently with the aliphatic [C<sub>4</sub>H<sub>6</sub>O<sub>4</sub>] anion, while keeping the cationic end constant, yield a series of seven compounds with a significant boost in Δ<i>n</i><sub>calc</sub> = (0.145-0.658@546 nm) which is optimal in their respective families. The substantial increase in birefringence is ascribed to dimensional transition and the propensity of [APZ] to form low-dimensional frameworks, modulated by hydrogen bonds. The intralayer [N-H⋯O], [O-H⋯N], and [N-H⋯F] interactions regulate the perfect coplanar arrangement (<i>ϑ</i> = 0°) of birefringent active units resulting in more pronounced in-plane anisotropy. Moreover, theoretical calculations corroborate that the sequential anion exchange brings variations in optical polarizability, leading to superior linear optical performance of birefringent materials. This work presents a novel birefringent gene, offering promising prospects for synthesizing compounds with exceptional birefringence within low-dimensional systems.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dichang Xue, Xing Su, Jin Xu, Xiaodong Li, Hao Jiang, Lichen Zhang, Zichen Bai, Ruibin Wang, Zitong Deng, Lixiang Zhu, Zhengnan Su, Meishuai Zou
{"title":"A linearly programmable strategy for polymer elastomer mechanics.","authors":"Dichang Xue, Xing Su, Jin Xu, Xiaodong Li, Hao Jiang, Lichen Zhang, Zichen Bai, Ruibin Wang, Zitong Deng, Lixiang Zhu, Zhengnan Su, Meishuai Zou","doi":"10.1039/d5mh00220f","DOIUrl":"https://doi.org/10.1039/d5mh00220f","url":null,"abstract":"<p><p>The mechanical properties of polymer elastomer materials, such as strength and ductility, play important roles in a wide range of applications, including the carrying of major equipment and the construction of infrastructure. However, owing to the widespread disordered physicochemical bonding and unpredictable internal phase separation phenomenon, traditional materials show a complex nonlinear correlation between the material structure and its performance, which makes it difficult to accurately adapt to the performance requirements of various specific application scenarios. In view of the above challenges, this paper innovatively proposes a strategy to achieve linear programmability in the mechanical properties of polymer elastomer materials. Instead of increasing the entropy value of the material, which may be brought about by the traditional physical composite method, this strategy adopts a unique path of introducing special dynamic chain segments (AlPUs). This innovative design leads to a highly ordered microscopic hydrogen bonding arrangement within the elastomer, which effectively reduces the free volume within the material, thus bringing the mechanical response of the material closer to the ideal state. Furthermore, by fine-tuning the content of material components, we are able to achieve linear control of key mechanical indexes, such as tensile strength and elongation at break, which is a significant advantage in terms of precision, range of adjustment, and versatility. The successful implementation of this work opens up a new way toward logical, fine and intelligent design and preparation of polymer materials, providing a solid materials science foundation and unlimited possibilities to promote technological innovation and development in the field of future major equipment and infrastructure.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143490172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaiza Asensio, Lucía Olano-Vegas, Samuele Mattioni, Marco Gobbi, Fèlix Casanova, Luis E. Hueso and Beatriz Martín-García
{"title":"Engineering magnetism in hybrid organic–inorganic metal halide perovskites","authors":"Yaiza Asensio, Lucía Olano-Vegas, Samuele Mattioni, Marco Gobbi, Fèlix Casanova, Luis E. Hueso and Beatriz Martín-García","doi":"10.1039/D4MH01762E","DOIUrl":"10.1039/D4MH01762E","url":null,"abstract":"<p >The chemical and structural flexibility of hybrid organic–inorganic metal halide perovskites (HOIPs) provides an ideal platform for engineering not only their well-studied optical properties, but also their magnetic ones. In this review we present HOIPs from a new perspective, turning the attention to their magnetic properties and their potential as a new class of on-demand low-dimensional magnetic materials. Focusing on HOIPs containing transition metals, we comprehensively present the progress that has been made in preparing, understanding and exploring magnetic HOIPs. First, we briefly introduce HOIPs in terms of composition and crystal structure and examine the synthesis protocols commonly used to prepare those showing magnetic properties. Then, we present their rich magnetic behavior and phenomenology; discuss their origin and guidelines for tuning them by changing the perovskite phase, chemical composition and dimensionality; and showcase their potential application in magneto-optoelectronics and spintronics. Finally, we describe the current challenges in the field, such as their integration into devices, as well as the emerging possibilities of moving from magnetic doping to pure transition metal-based HOIPs, which will motivate further studies in the future.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 8","pages":" 2414-2435"},"PeriodicalIF":12.2,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wide-temperature solid polymer electrolytes: Li<sup>+</sup> coordination structure, ionic transport and interphases.","authors":"Qingqing Zhou, Minfeng Chen, Junjie Lu, Bifu Sheng, Jizhang Chen, Qiaobao Zhang, Xiang Han","doi":"10.1039/d4mh01869a","DOIUrl":"https://doi.org/10.1039/d4mh01869a","url":null,"abstract":"<p><p>Solid-state batteries have gradually become a hotspot for the development of lithium-ion batteries due to their intrinsic safety and potential high energy density, among which, solid polymer electrolytes (SPEs) have attracted much attention due to the advantages of low cost, good flexibility and scalability for commercial application. However, the low ionic conductivity at room temperature, low mechanical strength and unstable interfaces of SPEs hinder further practical applications. In this paper, the modulation of the Li coordination structure and different ion transport channels in the wide-temperature range are reviewed. In addition, the effects of the Li coordination structure on the electrolyte/electrode interfaces/interphases and electrochemical performance are also presented. Furthermore, future research directions including coordination structure, ion transport, manufacturing techniques and full cell performance are summarized and an outlook is given, which will provide general principles to design safe and high-performance solid-state lithium batteries.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143481819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in small droplets manipulation on bio-inspired slippery surfaces: chances and challenges.","authors":"Wenhao Zhang, Xiaobo Wang, Zhiguang Guo","doi":"10.1039/d4mh01666a","DOIUrl":"https://doi.org/10.1039/d4mh01666a","url":null,"abstract":"<p><p>The manipulation of droplets with non-destructive, efficient, and high-precision features is of great importance in several fields, including microfluidics and biomedicine. The lubrication layer of bioinspired slippery surfaces demonstrates remarkable stability and self-restoration capabilities when subjected to external perturbations. Consequently, research into the manipulation of droplets on slippery surfaces has continued to make progress. This paper presents a review of the methods of droplet manipulation on bioinspired slippery surfaces. It begins by outlining the basic theory of slippery surfaces and the mechanism of droplet motion on slippery surfaces. Furthermore, droplet manipulation methods on slippery surfaces are classified into active and passive approaches based on the presence of external stimuli (<i>e.g.</i>, heat, light, electricity, and magnetism). Finally, an outlook is provided on the current challenges facing droplet manipulation on slippery surfaces, and potential solution ideas are presented.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143481795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in lead-free carbon supported perovskites based on Z-scheme and S-scheme heterojunctions for photocatalytic energy conversion.","authors":"Ritika Soni, Vatika Soni, P E Lokhande, Deepak Kumar, Nabisab Mujawar Mubarak, Seepana Praveenkumar, Raj Kumar, Kulwinder Singh, Udayabhaskar Rednam, Radhamanohar Aepuru, Krishnamoorthy Shanmugaraj","doi":"10.1039/d4mh01516a","DOIUrl":"https://doi.org/10.1039/d4mh01516a","url":null,"abstract":"<p><p>Photocatalysis has emerged as a crucial technology for utilizing solar energy to combat global warming and energy shortages. In this realm, both organic and inorganic halide/oxide perovskites have attracted considerable interest. Despite the prevalence of research on lead-based perovskites, the focus is shifting towards lead-free alternatives due to lead's detrimental environmental impact. These materials are at the forefront of developments in photovoltaics, optoelectronics, and photocatalysis. When combined with carbon-based materials to form heterojunctions, lead-free perovskites demonstrate outstanding photocatalytic performance while being cost-effective. This review examines various synthesis methods for lead-free perovskites and their numerous heterojunctions with carbon-based materials. It specifically highlights Z- and S-scheduled heterojunctions, emphasizing their use in hydrogen production, carbon dioxide reduction, and oxygen evolution. The review emphasizes the evolving field of scientific research aimed at solving current energy and environmental issues.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143481802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regulating intermolecular interactions for stable multifunctional organic-inorganic metal halide hybrid glasses.","authors":"Chunyan Jiang, Jing Yan, Jianrong Qiu, Mingmei Wu, Beibei Xu","doi":"10.1039/d4mh01427h","DOIUrl":"https://doi.org/10.1039/d4mh01427h","url":null,"abstract":"<p><p>Due to diverse properties complementary to their crystalline state, organic-inorganic metal halide hybrid (OIMH) glasses are drawing increasing attention. Nevertheless, the fundamental principles governing glass formation and crystallization in these materials remain elusive, significantly limiting their multifunctional applications. Here, high glass formation ability and tunable crystallization of glass are achieved through the regulation of intermolecular interactions. The π⋯π and C-H⋯π interactions among Bzmim<sup>+</sup> (Bzmim = 1-benzyl-3-methylimidazolium) cations increase the melt viscosity and packing inefficiency of the structure, thereby facilitating the high glass formation ability of Bzmim<sub>3</sub>SbCl<sub>6</sub> (B3SC6) and Bzmim<sub>2</sub>SbCl<sub>5</sub> (B2SC5). The crystallization behaviour of these glasses is closely related to electrostatic attraction. The stronger electrostatic attraction and larger melt fragility in B3SC6 lead to a longer cooperative length of the supercooled liquid above <i>T</i><sub>g</sub>, resulting in a reversible and rapid crystal-glass transformation accompanied by high contrast luminescence switching upon heating. Conversely, the weaker electrostatic attraction and smaller melt fragility in B2SC5 result in a stable glass, and transparent glass ceramic can be fabricated by assisted nucleation and slow crystallization growth. This work highlights the important impact of intermolecular interactions on the formation and crystallization of OIMH glass, providing a design framework for engineering tailored properties for advanced applications in nonvolatile memory and photonic devices.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143481808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shanshan Song, Congyu Hou, An Yang, Lishi Wei, Hongzhi Liu, Di Xie and Yongming Song
{"title":"Ultraviolet durable and recyclable radiative cooling covering for efficient building energy saving†","authors":"Shanshan Song, Congyu Hou, An Yang, Lishi Wei, Hongzhi Liu, Di Xie and Yongming Song","doi":"10.1039/D4MH01926A","DOIUrl":"10.1039/D4MH01926A","url":null,"abstract":"<p >Passive radiative cooling (PRC) is a zero-energy thermal management technology used for efficient building energy saving. Polymer-based porous films are promising PRC materials, but their low ultraviolet (UV) durability and lack of recyclability limit their long-term and widespread application. Herein, a recyclable polymer-based porous radiative cooling film with excellent ultraviolet durability was developed as the covering of a building. Owing to the Mie scattering effect of the porous structure and strong infrared emittance of ethyl cellulose, the film demonstrated a radiative cooling capability of 10.6 °C at a solar irradiance of 510 W m<small><sup>−2</sup></small>. The calculated energy consumption results indicated that the average cooling consumption reached 429.4 kW h, and 31% of the cooling energy could be saved. Notably, owing to the conjugated benzene ring structure of styrene–ethylene–butylene–styrene (SEBS), the film blocked most of the incident UV radiation and diffused the absorptive energy through the delocalization effect of electron clouds. Thus, the film retained high solar reflectivity after continuous UV exposure for 240 h. Notably, the film could be cyclically utilized using a simple nonsolvent-induced phase separation (NIPS) approach. This research offers new insights into the design of UV-durable and recyclable PRC materials, providing a promising prospect for minimizing global building energy consumption and facilitating the development of sustainable buildings.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 8","pages":" 2535-2544"},"PeriodicalIF":12.2,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhaole Lu, Jijie Zhang, Yuting Wang, Yifu Yu, Lingjun Kong
{"title":"Recent advances in metal single-atom catalysts for ammonia electrosynthesis.","authors":"Zhaole Lu, Jijie Zhang, Yuting Wang, Yifu Yu, Lingjun Kong","doi":"10.1039/d5mh00042d","DOIUrl":"https://doi.org/10.1039/d5mh00042d","url":null,"abstract":"<p><p>Electrochemical ammonia synthesis is a promising alternative to the Haber-Bosch process, offering significant potential for sustainable agricultural production and the development of portable, carbon-free energy carriers. The development of electrocatalytic systems is currently dependent on the exploration of electrocatalysts with high activity, selectivity, and stability. Metal single-atom catalysts (SACs) have become a new attractive frontier for ammonia electrosynthesis, owing to their maximized atom utilization, unsaturated atom coordination, and tunable electronic structure. In this review, we focused on different metal sites inside the single-atom catalysts and summarized recent advances in SACs for ammonia electrosynthesis. The properties of small nitrogenous substances (including N<sub>2</sub>, NO, NO<sub>2</sub><sup>-</sup>, and NO<sub>3</sub><sup>-</sup>) are summarized. In addition, the SACs for different catalytic systems are reviewed, with a particular focus on the special and common grounds of metal atom sites. Finally, the perspectives and challenges of SACs for ammonia electrosynthesis are comprehensively discussed, aspiring to provide insights into the development of electrochemical ammonia synthesis.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143481806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Huang, Ting Shi, Yang Qin, Yaowei Jin, Lu Huang, Yaojie Sun, Chengmin Hu, Ziyang Song, Fengxian Xie
{"title":"Fast and stable NH<sub>4</sub><sup>+</sup> storage in multielectron H-bonding-acceptor organic molecules for aqueous zinc batteries.","authors":"Qi Huang, Ting Shi, Yang Qin, Yaowei Jin, Lu Huang, Yaojie Sun, Chengmin Hu, Ziyang Song, Fengxian Xie","doi":"10.1039/d4mh01809e","DOIUrl":"https://doi.org/10.1039/d4mh01809e","url":null,"abstract":"<p><p>High-capacity small organic compounds are easily dissolved in aqueous electrolytes, resulting in limited cycling stability of Zn-organic batteries (ZOBs). To address this issue, we proposed constructing superstable lock-and-key hydrogen-bonding networks between the 2,7-dinitrophenanthraquinone (DNPQ) cathode and NH<sub>4</sub><sup>+</sup> charge carriers to achieve ultrastable ZOBs. DNPQ, with its sextuple-active carbonyl/nitro motifs (H-bonding acceptors), was found to be uniquely prone to redox-coupling with tetrahedral NH<sub>4</sub><sup>+</sup> ions (H-bonding donors) while excluding sluggish Zn<sup>2+</sup> ions, owing to a lower activation energy (0.32 <i>vs.</i> 0.43 eV). NH<sub>4</sub><sup>+</sup>-coordinated H-bonding electrochemistry overcame the instability of the DNPQ cathode in aqueous electrolytes and enabled rapid redox kinetics of non-metal NH<sub>4</sub><sup>+</sup> charge carriers. As a result, a three-step 3e<sup>-</sup> NH<sub>4</sub><sup>+</sup> coordination with the DNPQ cathode achieved large-current survivability (50 A g<sup>-1</sup>) and long-lasting cyclability (80 000 cycles) for ZOBs. This work broadens the potential for developing high-performance H-bonding-stabilized organics for advanced ZOBs.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143481798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}