Stretch-activated morphing enabled by integrated physical-chemical network engineering.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhao Xu, Zi-Yang Fan, Dun-Wen Wei, Rui-Ying Bao, Wei Yang
{"title":"Stretch-activated morphing enabled by integrated physical-chemical network engineering.","authors":"Zhao Xu, Zi-Yang Fan, Dun-Wen Wei, Rui-Ying Bao, Wei Yang","doi":"10.1039/d5mh01289a","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical stimuli-responsive shape transformations, exemplified by mimosa leaves, are widespread in nature, yet remain challenging to realize through facile fabrication in synthetic morphing materials. Herein, we demonstrate stretch-activated shape-morphing enabled by an elastic-plastic bilayer structure assembled <i>via</i> dynamic crosslinking. Through dioxaborolane metathesis, a dynamic, crosslinked polyolefin elastomer (POEV) with elasticity and a co-crosslinked POE/paraffin wax blend (POE/PW-V) with tunable plasticity are prepared. An elastic-plastic mismatched bilayer is then assembled <i>via</i> dioxaborolane metathesis at the interface. Upon stretching and release, the elastic POEV layer attempts to recover, while the plastic POE/PW-V layer resists recovery, inducing curled deformation of the bilayer strips. The localized bilayer design allows for selective activation and region-specific shape transformation under tensile stress, enabling the creation of customizable morphing geometries. Moreover, the low-entropy conformation fixed during stretching spontaneously reverts to a high-entropy state upon heating-induced melting of PW crystals, thereby restoring the original shape. This thermally induced recovery ensures repeatable stretch activation. This work presents a design strategy that integrates physical and chemical network engineering to develop heterogeneously responsive systems, offering promising potential for soft morphing device applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh01289a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical stimuli-responsive shape transformations, exemplified by mimosa leaves, are widespread in nature, yet remain challenging to realize through facile fabrication in synthetic morphing materials. Herein, we demonstrate stretch-activated shape-morphing enabled by an elastic-plastic bilayer structure assembled via dynamic crosslinking. Through dioxaborolane metathesis, a dynamic, crosslinked polyolefin elastomer (POEV) with elasticity and a co-crosslinked POE/paraffin wax blend (POE/PW-V) with tunable plasticity are prepared. An elastic-plastic mismatched bilayer is then assembled via dioxaborolane metathesis at the interface. Upon stretching and release, the elastic POEV layer attempts to recover, while the plastic POE/PW-V layer resists recovery, inducing curled deformation of the bilayer strips. The localized bilayer design allows for selective activation and region-specific shape transformation under tensile stress, enabling the creation of customizable morphing geometries. Moreover, the low-entropy conformation fixed during stretching spontaneously reverts to a high-entropy state upon heating-induced melting of PW crystals, thereby restoring the original shape. This thermally induced recovery ensures repeatable stretch activation. This work presents a design strategy that integrates physical and chemical network engineering to develop heterogeneously responsive systems, offering promising potential for soft morphing device applications.

拉伸激活变形由集成的物理化学网络工程实现。
以含羞草叶片为例的机械刺激响应形状转换在自然界中广泛存在,但通过合成变形材料的易于制造实现仍然具有挑战性。在这里,我们展示了通过动态交联组装的弹塑性双层结构实现拉伸激活的形状变形。通过二恶硼烷复分解,制备了具有弹性的动态交联聚烯烃弹性体(POEV)和塑性可调的共交联POE/PW-V。然后在界面处通过二恶硼烷复合组装弹塑性错配双分子层。在拉伸和释放时,弹性POE/PW-V层试图恢复,而塑性POE/PW-V层抵制恢复,导致双层带卷曲变形。局部双层设计允许在拉伸应力下选择性激活和特定区域的形状转换,从而创建可定制的变形几何形状。此外,在拉伸过程中固定的低熵构象在加热诱导PW晶体熔化时自发地恢复到高熵状态,从而恢复原始形状。这种热诱导恢复确保可重复拉伸激活。这项工作提出了一种集成物理和化学网络工程的设计策略,以开发异构响应系统,为软变形设备应用提供了有希望的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信