Haryeong Cho, Young-Ryul Kim, Jaehun Kim, Seungjae Lee, Seokhee Jung, Jeeyoon Kim, Jinyoung Kim, Yong-Jin Park, Sung-Phil Kim, Hyunhyub Ko
{"title":"具有控制电荷梯度的多层离子电子传感器,用于高性能、自供电的触觉传感。","authors":"Haryeong Cho, Young-Ryul Kim, Jaehun Kim, Seungjae Lee, Seokhee Jung, Jeeyoon Kim, Jinyoung Kim, Yong-Jin Park, Sung-Phil Kim, Hyunhyub Ko","doi":"10.1039/d5mh00503e","DOIUrl":null,"url":null,"abstract":"<p><p>Piezoionic sensors have emerged as a promising class of self-powered tactile sensors, utilizing ion transport within soft materials to convert mechanical stimuli into electrical signals. These sensors offer flexibility, biocompatibility, and the ability to detect both static and dynamic forces, making them highly suitable for wearable electronics, robotic skins, and human-machine interfaces. However, conventional piezoionic sensors suffer from low output signals and slow response times due to inefficient ion transport and charge separation. To address these limitations, we propose a multilayered piezoionic sensor incorporating positively and negatively charged surface layers to create a controlled charge gradient. This design enhances ion mobility and reduces binding energy between ion pairs, and accelerates charge redistribution, leading to significantly improved sensing performance. The proposed sensor achieves an enhanced output current of 1.2 μA and a rapid response time of 19 ms, demonstrating superior sensing performances compared to single-layer designs. Additionally, the sensor effectively detects both static and dynamic forces, including vibration stimuli for surface texture detection, and enables air flow mapping by distinguishing both direction and intensity. By overcoming the fundamental limitations of existing piezoionic sensors, our multilayer approach establishes a new paradigm for high-performance, self-powered tactile sensing, paving the way for next-generation soft electronics and smart sensor systems.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilayer iontronic sensors with controlled charge gradients for high-performance, self-powered tactile sensing.\",\"authors\":\"Haryeong Cho, Young-Ryul Kim, Jaehun Kim, Seungjae Lee, Seokhee Jung, Jeeyoon Kim, Jinyoung Kim, Yong-Jin Park, Sung-Phil Kim, Hyunhyub Ko\",\"doi\":\"10.1039/d5mh00503e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Piezoionic sensors have emerged as a promising class of self-powered tactile sensors, utilizing ion transport within soft materials to convert mechanical stimuli into electrical signals. These sensors offer flexibility, biocompatibility, and the ability to detect both static and dynamic forces, making them highly suitable for wearable electronics, robotic skins, and human-machine interfaces. However, conventional piezoionic sensors suffer from low output signals and slow response times due to inefficient ion transport and charge separation. To address these limitations, we propose a multilayered piezoionic sensor incorporating positively and negatively charged surface layers to create a controlled charge gradient. This design enhances ion mobility and reduces binding energy between ion pairs, and accelerates charge redistribution, leading to significantly improved sensing performance. The proposed sensor achieves an enhanced output current of 1.2 μA and a rapid response time of 19 ms, demonstrating superior sensing performances compared to single-layer designs. Additionally, the sensor effectively detects both static and dynamic forces, including vibration stimuli for surface texture detection, and enables air flow mapping by distinguishing both direction and intensity. By overcoming the fundamental limitations of existing piezoionic sensors, our multilayer approach establishes a new paradigm for high-performance, self-powered tactile sensing, paving the way for next-generation soft electronics and smart sensor systems.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh00503e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00503e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multilayer iontronic sensors with controlled charge gradients for high-performance, self-powered tactile sensing.
Piezoionic sensors have emerged as a promising class of self-powered tactile sensors, utilizing ion transport within soft materials to convert mechanical stimuli into electrical signals. These sensors offer flexibility, biocompatibility, and the ability to detect both static and dynamic forces, making them highly suitable for wearable electronics, robotic skins, and human-machine interfaces. However, conventional piezoionic sensors suffer from low output signals and slow response times due to inefficient ion transport and charge separation. To address these limitations, we propose a multilayered piezoionic sensor incorporating positively and negatively charged surface layers to create a controlled charge gradient. This design enhances ion mobility and reduces binding energy between ion pairs, and accelerates charge redistribution, leading to significantly improved sensing performance. The proposed sensor achieves an enhanced output current of 1.2 μA and a rapid response time of 19 ms, demonstrating superior sensing performances compared to single-layer designs. Additionally, the sensor effectively detects both static and dynamic forces, including vibration stimuli for surface texture detection, and enables air flow mapping by distinguishing both direction and intensity. By overcoming the fundamental limitations of existing piezoionic sensors, our multilayer approach establishes a new paradigm for high-performance, self-powered tactile sensing, paving the way for next-generation soft electronics and smart sensor systems.