配体对纳米光刻中铟钛氧纳米团簇的影响。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiao Wu, Jiali Chen, Liming Wang, Yuting Ye, Xiaozhi Zhan, Yihang Song, Qiao-Hong Li, Xiaofeng Yi, Jian Zhang
{"title":"配体对纳米光刻中铟钛氧纳米团簇的影响。","authors":"Jiao Wu, Jiali Chen, Liming Wang, Yuting Ye, Xiaozhi Zhan, Yihang Song, Qiao-Hong Li, Xiaofeng Yi, Jian Zhang","doi":"10.1039/d4mh01920b","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-oxo clusters have emerged as promising candidates for nanolithography technology. However, achieving precise control over their structures and compositions to enhance solution processability and film properties remains a significant challenge. This study introduces a novel ligand-regulation strategy for modularly assembling In-Ti-oxo clusters and represents the pioneering application of In-Ti-oxo clusters in nanolithography. Specifically, we explore the indium-based flexible trifurcate InL<sub>3</sub> as a metalloligand (L = salicylate derivatives) to stabilize isomeric In<sub>4</sub>Ti<sub>12</sub>-cores with varying spherical shells: InOC-20V, InOC-21V, InOC-22V and InOC-23H. These isomers, in turn, induce markedly distinct solution processabilities. InOC-20V to InOC-22V feature vertically connected Ti<sub>6</sub>In<sub>2</sub>-SBUs, resulting in superior solubility compared to InOC-23H, which has parallel-connected Ti<sub>6</sub>In<sub>2</sub>-SBUs. In addition, the organic periphery is critical for film formation, and only InOC-20V, decorated with salicylate groups, produces high-quality films <i>via</i> spin-coating with 50 nm resolution patterns for lithography. To gain insight into the exposure mechanisms, a combination of DFT calculations, TGA-MS, XPS, and AFM-IR was used, indicating that the decarboxylation of the ligands significantly contributes to the solubility-switching behaviors necessary for lithography. These findings offer generalizable synthetic methods to expand the In-Ti-oxo cluster structural chemistry and highlight the efficacy of tailored structural modulation of cluster materials in enhancing solution processability and lithography performance, providing valuable insights for future material design and applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ligand effect on In-Ti-oxo nanoclusters for nanolithography.\",\"authors\":\"Jiao Wu, Jiali Chen, Liming Wang, Yuting Ye, Xiaozhi Zhan, Yihang Song, Qiao-Hong Li, Xiaofeng Yi, Jian Zhang\",\"doi\":\"10.1039/d4mh01920b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metal-oxo clusters have emerged as promising candidates for nanolithography technology. However, achieving precise control over their structures and compositions to enhance solution processability and film properties remains a significant challenge. This study introduces a novel ligand-regulation strategy for modularly assembling In-Ti-oxo clusters and represents the pioneering application of In-Ti-oxo clusters in nanolithography. Specifically, we explore the indium-based flexible trifurcate InL<sub>3</sub> as a metalloligand (L = salicylate derivatives) to stabilize isomeric In<sub>4</sub>Ti<sub>12</sub>-cores with varying spherical shells: InOC-20V, InOC-21V, InOC-22V and InOC-23H. These isomers, in turn, induce markedly distinct solution processabilities. InOC-20V to InOC-22V feature vertically connected Ti<sub>6</sub>In<sub>2</sub>-SBUs, resulting in superior solubility compared to InOC-23H, which has parallel-connected Ti<sub>6</sub>In<sub>2</sub>-SBUs. In addition, the organic periphery is critical for film formation, and only InOC-20V, decorated with salicylate groups, produces high-quality films <i>via</i> spin-coating with 50 nm resolution patterns for lithography. To gain insight into the exposure mechanisms, a combination of DFT calculations, TGA-MS, XPS, and AFM-IR was used, indicating that the decarboxylation of the ligands significantly contributes to the solubility-switching behaviors necessary for lithography. These findings offer generalizable synthetic methods to expand the In-Ti-oxo cluster structural chemistry and highlight the efficacy of tailored structural modulation of cluster materials in enhancing solution processability and lithography performance, providing valuable insights for future material design and applications.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01920b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01920b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属氧簇已成为纳米光刻技术的有前途的候选者。然而,实现对其结构和成分的精确控制以提高溶液可加工性和薄膜性能仍然是一个重大挑战。本研究介绍了一种新的配体调节策略,用于模块化组装in - ti -oxo簇,代表了in - ti -oxo簇在纳米光刻中的开创性应用。具体来说,我们探索了铟基柔性三叉InL3作为金属寡配物(L =水杨酸衍生物)来稳定具有不同球壳的异构体in4ti12核:ino - 20v, ino - 21v, ino - 22v和ino - 23h。这些异构体,反过来,诱导明显不同的溶液处理能力。ino - 20v到ino - 22v具有垂直连接的Ti6In2-SBUs,与并行连接的Ti6In2-SBUs的ino - 23h相比,具有更好的溶解度。此外,有机外围对于薄膜的形成至关重要,只有用水杨酸基团修饰的ino - 20v才能通过旋转涂层产生高质量的薄膜,其分辨率为50 nm,用于光刻。为了深入了解曝光机制,我们结合了DFT计算、TGA-MS、XPS和AFM-IR,表明配体的脱羧对光刻所需的溶解度转换行为有重要影响。这些发现为扩展in - ti -oxo团簇结构化学提供了可推广的合成方法,并突出了团簇材料的定制结构调制在提高溶液可加工性和光刻性能方面的功效,为未来的材料设计和应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ligand effect on In-Ti-oxo nanoclusters for nanolithography.

Metal-oxo clusters have emerged as promising candidates for nanolithography technology. However, achieving precise control over their structures and compositions to enhance solution processability and film properties remains a significant challenge. This study introduces a novel ligand-regulation strategy for modularly assembling In-Ti-oxo clusters and represents the pioneering application of In-Ti-oxo clusters in nanolithography. Specifically, we explore the indium-based flexible trifurcate InL3 as a metalloligand (L = salicylate derivatives) to stabilize isomeric In4Ti12-cores with varying spherical shells: InOC-20V, InOC-21V, InOC-22V and InOC-23H. These isomers, in turn, induce markedly distinct solution processabilities. InOC-20V to InOC-22V feature vertically connected Ti6In2-SBUs, resulting in superior solubility compared to InOC-23H, which has parallel-connected Ti6In2-SBUs. In addition, the organic periphery is critical for film formation, and only InOC-20V, decorated with salicylate groups, produces high-quality films via spin-coating with 50 nm resolution patterns for lithography. To gain insight into the exposure mechanisms, a combination of DFT calculations, TGA-MS, XPS, and AFM-IR was used, indicating that the decarboxylation of the ligands significantly contributes to the solubility-switching behaviors necessary for lithography. These findings offer generalizable synthetic methods to expand the In-Ti-oxo cluster structural chemistry and highlight the efficacy of tailored structural modulation of cluster materials in enhancing solution processability and lithography performance, providing valuable insights for future material design and applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信