Synergistic peptide-organic matrix enhances mineralization of biomimetic scaffolds for bone regeneration.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yawen Huang, Ziqi Zhao, Yu Yang, Ruiqi Mao, Dongxuan Li, Fengxiong Luo, Kefeng Wang, Yujiang Fan, Xingdong Zhang
{"title":"Synergistic peptide-organic matrix enhances mineralization of biomimetic scaffolds for bone regeneration.","authors":"Yawen Huang, Ziqi Zhao, Yu Yang, Ruiqi Mao, Dongxuan Li, Fengxiong Luo, Kefeng Wang, Yujiang Fan, Xingdong Zhang","doi":"10.1039/d5mh00969c","DOIUrl":null,"url":null,"abstract":"<p><p>Biomimetic mineralized composites engineered <i>via</i> organic matrix templating show promise for bone repair but suffer from poor mineralization and imbalanced mechanical-biological performance. This study synergistically regulated biomolecules and organic matrix properties to enhance <i>in situ</i> mineralization, thereby improving mechanical strength and osteogenic potential. A nucleation-domain containing peptide (HGRGEAFDY) screened through molecular dynamics simulation was integrated into the gelatin matrix to prepare biomimetic materials with enhanced mineralization performance. The influence of peptide and organic matrix properties on mineralization capacity and saturation of <i>in situ</i> mineralization (SIM) was investigated. Results demonstrated that peptides with characteristic nucleation domains can boost mineralization by providing more nucleation sites and strengthening organic-inorganic interactions. Meanwhile, matrix compactness negatively correlated with mineralization capacity and SIM. Combined modulation of peptide nucleation ability and matrix compactness can enhance the SIM of the matrix, increasing the amount of minerals while improving mechanical properties. The biomimetic composites/scaffolds with mineralization enhancement by peptide-organic matrix regulation were evidenced to promote cell proliferation and osteogenic differentiation, and <i>in vivo</i> bone regeneration by upregulating BMP2 gene expression. This study provides valuable insights into the design of biomimetic mineralized materials and offers strategies for developing bone repair scaffolds with improved mechanical and biological performance.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00969c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomimetic mineralized composites engineered via organic matrix templating show promise for bone repair but suffer from poor mineralization and imbalanced mechanical-biological performance. This study synergistically regulated biomolecules and organic matrix properties to enhance in situ mineralization, thereby improving mechanical strength and osteogenic potential. A nucleation-domain containing peptide (HGRGEAFDY) screened through molecular dynamics simulation was integrated into the gelatin matrix to prepare biomimetic materials with enhanced mineralization performance. The influence of peptide and organic matrix properties on mineralization capacity and saturation of in situ mineralization (SIM) was investigated. Results demonstrated that peptides with characteristic nucleation domains can boost mineralization by providing more nucleation sites and strengthening organic-inorganic interactions. Meanwhile, matrix compactness negatively correlated with mineralization capacity and SIM. Combined modulation of peptide nucleation ability and matrix compactness can enhance the SIM of the matrix, increasing the amount of minerals while improving mechanical properties. The biomimetic composites/scaffolds with mineralization enhancement by peptide-organic matrix regulation were evidenced to promote cell proliferation and osteogenic differentiation, and in vivo bone regeneration by upregulating BMP2 gene expression. This study provides valuable insights into the design of biomimetic mineralized materials and offers strategies for developing bone repair scaffolds with improved mechanical and biological performance.

协同肽-有机基质增强骨再生仿生支架的矿化。
采用有机基质模板技术制备的仿生矿化复合材料具有良好的骨修复效果,但矿化性能差,力学-生物性能不平衡。本研究通过协同调节生物分子和有机基质特性来增强原位矿化,从而提高机械强度和成骨潜能。将分子动力学模拟筛选的含核结构域肽(HGRGEAFDY)整合到明胶基质中,制备矿化性能增强的仿生材料。研究了多肽和有机基质性质对原位矿化(SIM)矿化能力和饱和度的影响。结果表明,具有特征成核结构域的肽可以通过提供更多的成核位点和加强有机-无机相互作用来促进矿化。同时,基质密实度与矿化能力和SIM呈负相关。复合调节多肽成核能力和基质致密性可以提高基质的SIM,增加矿物的含量,同时改善力学性能。通过多肽-有机基质调控增强矿化的仿生复合材料/支架通过上调BMP2基因表达促进细胞增殖、成骨分化和体内骨再生。本研究为仿生矿化材料的设计提供了有价值的见解,并为开发具有更好机械和生物性能的骨修复支架提供了策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信