AdsorptionPub Date : 2025-10-04DOI: 10.1007/s10450-025-00655-y
Samuel L. Zelinka, Samuel V. Glass, Natalia Farkas, Emil E. Thybring, Michael Altgen, Lauri Rautkari, Simon Curling, Jinzhen Cao, Yujiao Wang, Tina Künniger, Gustav Nyström, Christopher Hubert Dreimol, Ingo Burgert, Mark G. Roper, Darren P. Broom, Matthew Schwarzkopf, Arief Yudhanto, Mohammad Subah, Gilles Lubineau, Maria Fredriksson, Wiesław Olek, Jerzy Majka, Nanna Bjerregaard Pedersen, Daniel J. Burnett, Armando R. Garcia, Frieder Dreisbach, Louis Waguespack, Jennifer Schott, Luis G. Esteban, Alberto García‑Iruela, Thibaut Colinart, Romain Rémond, Brahim Mazian, Patrick Perré, Lukas Emmerich
{"title":"Interlaboratory study of automated sorption measurements in wood: method for correcting systematic errors with the commonly used 0.002% min−1 stop criterion","authors":"Samuel L. Zelinka, Samuel V. Glass, Natalia Farkas, Emil E. Thybring, Michael Altgen, Lauri Rautkari, Simon Curling, Jinzhen Cao, Yujiao Wang, Tina Künniger, Gustav Nyström, Christopher Hubert Dreimol, Ingo Burgert, Mark G. Roper, Darren P. Broom, Matthew Schwarzkopf, Arief Yudhanto, Mohammad Subah, Gilles Lubineau, Maria Fredriksson, Wiesław Olek, Jerzy Majka, Nanna Bjerregaard Pedersen, Daniel J. Burnett, Armando R. Garcia, Frieder Dreisbach, Louis Waguespack, Jennifer Schott, Luis G. Esteban, Alberto García‑Iruela, Thibaut Colinart, Romain Rémond, Brahim Mazian, Patrick Perré, Lukas Emmerich","doi":"10.1007/s10450-025-00655-y","DOIUrl":"10.1007/s10450-025-00655-y","url":null,"abstract":"<div><p>Many studies that use an automated sorption balance to determine a water vapor sorption isotherm for wood collect data until the moisture content change is less than or equal to 0.002% min<sup>−1</sup> (20 µg g<sup>−1</sup> min<sup>−1</sup>). This stop criterion has been claimed to give errors in equilibrium moisture content (EMC) predictions of less than 0.001 g g<sup>−1</sup> but over the past 10 years, studies have shown that the actual errors can be greater than 0.01 g g<sup>−1</sup> because the measurements are stopped well before equilibrium is reached. Despite the large errors associated with this stop criterion, it remains popular due to the speed at which isotherms can be measured. This paper utilizes data from a worldwide interlaboratory study on automated sorption balances to develop a correction method for estimating EMC of western larch (<i>Larix occidentalis</i> Nutt.) from the moisture content corresponding to the 20 µg g<sup>−1</sup> min<sup>−1</sup> criterion. The study uses data from 72 relative humidity absorption steps with hold times of 7–10 days from 21 different laboratories and eight different instrument models. EMC is defined based on the inherent mass stability of automated sorption balances determined in the first part of this interlaboratory study. On average the sorption process is less than 80% complete when the 20 µg g<sup>−1</sup> min<sup>−1</sup> criterion is reached, resulting in a mean absolute error (MAE) of 0.006 g g<sup>−1</sup>. The correction equation for estimating EMC reduces the MAE to 0.001 g g<sup>−1</sup>. The analysis presented in this paper, along with the correction equation, can be considered for certain use cases to reduce systematic errors and shorten measurement times.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 7","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10450-025-00655-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145256326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdsorptionPub Date : 2025-10-04DOI: 10.1007/s10450-025-00648-x
Hadi Mansoubi, Zahra Mansourpour, Shohreh Fatemi
{"title":"Diffusion-Driven discrepancies in LBM adsorption modeling: A comparative study of active and passive scalar approaches for adsorption processes","authors":"Hadi Mansoubi, Zahra Mansourpour, Shohreh Fatemi","doi":"10.1007/s10450-025-00648-x","DOIUrl":"10.1007/s10450-025-00648-x","url":null,"abstract":"<div><p>Using the Lattice Boltzmann method (LBM) for simulation of fluid dynamics in complex systems such as adsorption with the advection terms of scalar fields (concentration and temperature distribution), different approaches of advection coupling to the fluid motion can be proposed: “Active or Passive Scalers”. In the present study, the usefulness of active or passive scalars in simulation of an adsorption bed using LBM at different operating conditions such as temperature, pressure and feed flow rate were investigated. In the active scalar approach in LBM, the collision operator in the Boltzmann transport equation consists of two terms: the self and cross collision. On the other hand, the collision term for a passive scalar comes from the Chapman relationship. As the cross collision term in active scalar has an inverse relationship with diffusion coefficient, the effect of this term reduces in gas systems such as adsorption with a high diffusion coefficient; thus, the active and passive approaches become similar. It is obvious that in systems with a lower diffusion coefficient (liquid systems), the cross collision term in collision operator in LBM is high; therefore, it is expected that the active approach with more precise results deviates from the passive approach. Results showed that in most cases, the average relative error compared to experimental data was less in active scalar than in passive scalar approach, indicating that the active scalar approach predicts the adsorption behavior with higher accuracy in comparison with the passive approach.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 7","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145256325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdsorptionPub Date : 2025-09-26DOI: 10.1007/s10450-025-00647-y
V. Nagarajan, R. Bhuvaneswari, R. Chandiramouli
{"title":"Effect of strain in beta phosphorus nitride nanosheets on the adsorption of polycyclic aromatic hydrocarbons: a DFT study","authors":"V. Nagarajan, R. Bhuvaneswari, R. Chandiramouli","doi":"10.1007/s10450-025-00647-y","DOIUrl":"10.1007/s10450-025-00647-y","url":null,"abstract":"<div><p>Nowadays, many pollutants, especially polycyclic-aromatic-hydrocarbons (PAHs), are a high threat to humans as well as animals due to their carcinogenic behaviour. Therefore, in the present research work, we studied the adsorption behaviour of three different PAHs, namely anthracene, benzo[a]pyrene, and chrysene, on monolayer beta phosphorous nitride nanosheet (β-PN-sheet) using the density-functional-theory (DFT) method. Besides, low-dimensional material possesses many features, including a large active surface region and the electronic properties can be fine-tuned easily, which are the main requirements for chemical sensors. Initially, the structural stability of the β-PN-sheet is confirmed with the support of phonon-band-maps and formation energy. Furthermore, the electronic properties of β-PN-sheet are investigated using band maps and projected-density-of-states (PDOS) maps. We also studied the influence of compressive strain on the electronic properties as well as on the adsorption properties of the β-PN-sheet. The computed band gap of β-PN-sheet slightly increases from 3.355 eV to 3.537 eV owing to the compressive strain. The adsorption behaviour of PAH pollutants on β-PN-sheet is studied with significant factors, namely adsorption energy, relative band gap changes, and Mulliken population analysis. Furthermore, the adsorption of PAHs on β-PN-sheet gets slightly improved with applied compressive strain, and the adsorption energy falls in the scale of physisorption (−0.292 eV to −0.404 eV). Furthermore, a fast recovery time is obtained while desorbing PAH pollutants from the β-PN-sheet. The sensing response of β-PN-sheet to PAHs gets enhanced by applying compressive strain.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 7","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145169639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdsorptionPub Date : 2025-09-26DOI: 10.1007/s10450-025-00654-z
Kevin Dedecker, Martin Drobek, Anne Julbe
{"title":"π-Quadrupole-driven gate-opening in ZIFs for selective VOC capture","authors":"Kevin Dedecker, Martin Drobek, Anne Julbe","doi":"10.1007/s10450-025-00654-z","DOIUrl":"10.1007/s10450-025-00654-z","url":null,"abstract":"<div><p>The selective capture of volatile organic compounds (VOCs) is a significant challenge in environmental remediation. In this study, we explore how MOF structural flexibility and the electronic properties of VOCs influence their adsorption by comparing two functionalized zeolitic imidazolate frameworks: the flexible ZIF-8_CH<sub>3</sub> and the rigid ZIF-8_Br. Using benzene and hexafluorobenzene as probe molecules with contrasting quadrupole moments, we demonstrate that ligand functionalization significantly impacts both structural dynamics and adsorption/separation performance. ZIF-8_CH<sub>3</sub> exhibits higher overall uptake capacities, reaching up to 7.3 mmol/g for hexafluorobenzene. In contrast, ZIF-8_Br shows superior separation capabilities, with IAST selectivity values reaching 17.1 for benzene/hexafluorobenzene mixtures at low pressures. Our experimental and computational analyses reveal that aromatics with negative quadrupole moments more readily appear to trigger the gate-opening phenomenon, establishing a potential correlation direct correlation between electron density distribution and molecular sieving efficiency. These findings offer new insights into the rational design of functionalized frameworks for selective VOC capture, highlighting the crucial role of electronic effects in determining host-guest interactions and separation performance.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 7","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145169640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdsorptionPub Date : 2025-09-11DOI: 10.1007/s10450-025-00650-3
Farag M. A. Altalbawy, Bahjat Saeed Issa, Hayder Hamid Abbas Al-Anbari, Gopalakrishnan Padmapriya, Navin Kedia, Rajni Verma, M. Ravi Kumar, Zainab Ahmed Hamodi, Sabeeh Thamer Fadhil, Muhamed Alfouroon
{"title":"The B2C3N nanosheet for adsorption and removal of some typical hazardous heavy metals","authors":"Farag M. A. Altalbawy, Bahjat Saeed Issa, Hayder Hamid Abbas Al-Anbari, Gopalakrishnan Padmapriya, Navin Kedia, Rajni Verma, M. Ravi Kumar, Zainab Ahmed Hamodi, Sabeeh Thamer Fadhil, Muhamed Alfouroon","doi":"10.1007/s10450-025-00650-3","DOIUrl":"10.1007/s10450-025-00650-3","url":null,"abstract":"<div><p>In this study, the adsorption and sensing capabilities of the recently introduced B<sub>2</sub>C<sub>3</sub>N nanosheet toward several typical hazardous heavy metals including Cu (0), Cu (I), Cu (II), As (0), As (III), and V (0) were systematically investigated using density functional theory (DFT) at the B3LYP/6-311G(d, p) level. The optimized geometries, adsorption energies, electrical conductivities, and recovery times were thoroughly analyzed to evaluate the selectivity and stability of the nanosheet-metal complexes. Our results reveal that B<sub>2</sub>C<sub>3</sub>N exhibits strong and selective adsorption toward Cu (II) and As (III) species, with significant changes in electrical conductivity serving as reliable sensing signals. The calculated recovery times indicate practical potential for reusability and efficient desorption of certain metals. This computational insight provides a theoretical foundation for the application of B<sub>2</sub>C<sub>3</sub>N nanosheets in environmental remediation and heavy metal sensing. Limitations of the current gas-phase model and suggestions for future experimental validation and extended theoretical studies are also discussed to guide further research.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 7","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145037410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdsorptionPub Date : 2025-08-07DOI: 10.1007/s10450-025-00646-z
Zhi Qi, Bo Ren, Yalou Guo, Chuhan Fu, Jinbiao Luo, Sibin Li, Jianbin Qin, Gang Wang, Tao Qi, Paul Webley, Guoping Hu
{"title":"Process simulation and analysis of air separation for oxygen production via fast vacuum swing adsorption","authors":"Zhi Qi, Bo Ren, Yalou Guo, Chuhan Fu, Jinbiao Luo, Sibin Li, Jianbin Qin, Gang Wang, Tao Qi, Paul Webley, Guoping Hu","doi":"10.1007/s10450-025-00646-z","DOIUrl":"10.1007/s10450-025-00646-z","url":null,"abstract":"<div><p>Fast pressure swing adsorption (FPSA) is an adsorption-based separation process with cycle durations ranging from a few to tens of seconds. While widely used in small-scale oxygen generators, FPSA still holds significant potential for improvement. In this study, we propose and demonstrate a novel rapid vacuum swing adsorption (FVSA) cycle, where adsorption occurs at atmospheric pressure and desorption under vacuum, to enhance small-scale oxygen production from air. A simulated air mixture, containing 78% nitrogen (N<sub>2</sub>), 21% oxygen (O<sub>2</sub>) and 1% argon (Ar), was processed through a dual-column FVSA system using LiLSX zeolite as the adsorbent. A numerical model was developed on Aspen Adsorption and validated against previously reported results. A parametric study was conducted to assess the effects of various operating conditions on separation performance. The results indicate that a low feed flow rate, low desorption pressure, and an optimal length-to-diameter (<i>L/D</i>) ratio improve the separation efficiency. Under operating conditions of 101.1 kPa adsorption pressure, 40.3 kPa desorption pressure, and a feed rate of 47 L/min, the system achieved a 91% O<sub>2</sub> product stream with a 5 L/min flowrate and 44% O<sub>2</sub> recovery. Compared to traditional FPSA, FVSA reduced energy consumption by 13% (39.24 vs. 33.99 kJ·mol<sup>−1</sup>O<sub>2</sub>) and lowered the air-to-oxygen ratio by 25% (14.4 vs. 10.8) while maintaining comparable O<sub>2</sub> purity, demonstrating its potential for more efficient oxygen production.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 6","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10450-025-00646-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145162558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdsorptionPub Date : 2025-08-07DOI: 10.1007/s10450-025-00645-0
José R. C. Ferreira, Leonã S. Flores, Talita V. F. Silva, Gustavo A. de Castro, Isabela A. A. Bessa, Rafael A. de Sousa, Célia M. Ronconi, Natália R. S. Araujo, Rita C. O. Sebastião, Charlane C. Corrêa
{"title":"An anionic-MOF based on Co2+ and an alkane tetracarboxylate ligand exhibiting Ni2+ ion-exchange behavior","authors":"José R. C. Ferreira, Leonã S. Flores, Talita V. F. Silva, Gustavo A. de Castro, Isabela A. A. Bessa, Rafael A. de Sousa, Célia M. Ronconi, Natália R. S. Araujo, Rita C. O. Sebastião, Charlane C. Corrêa","doi":"10.1007/s10450-025-00645-0","DOIUrl":"10.1007/s10450-025-00645-0","url":null,"abstract":"<div><p>This study reports an anionic metal-organic framework (iMOF-A), {(H<sub>2</sub>pa)<sub>3</sub>[Co<sub>3</sub>(BTCA)<sub>3</sub>].6H<sub>2</sub>O}<sub><i>n</i></sub>, where H<sub>2</sub>pa. is 1,3-propylenediamonium and BTCA is 1,2,3,4-butanetetracarboxylate. The compound, based on Co<sup>2+</sup>, crystallizes in a monoclinic system, (space group I2/a) with a non-interpenetrated three-dimensional <b>pts</b> topology. Its charge balancing is achieved by H<sub>2</sub>pa cations located in the framework’s pores, which can be exchanged with Ni<sup>2+</sup> ions. The compound was characterized by single-crystal and powder X-ray diffraction, infrared spectroscopy, elemental analysis, thermogravimetric analysis, and ultraviolet-visible absorption spectroscopy. The ion-exchange properties were evaluated by substituting the propanediammonium cations with Ni<sup>2+</sup> from aqueous solution. Batch experiments assessed the framework’s effectiveness in selectively adsorbing Ni<sup>2+</sup>, considering variables like initial metal ion concentration and contact time. The results show a high affinity for Ni<sup>2+</sup> ions, attributed to the unique polymer’s structural features. This work expands the library of anionic metal-organic frameworks and provides insights into the tunable ion-exchange properties of such frameworks.</p><h3>Graphical abstract</h3><p>A new metal-organic framework {(H<sub>2</sub>pa)<sub>3</sub>[Co<sub>3</sub>(BTCA)<sub>3</sub>].6H<sub>2</sub>O}<sub>n</sub> exhibits ion exchange between pore diammonium cations and hard metals in aqueous solution, supported by structural and spectroscopic studies.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 6","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145162557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdsorptionPub Date : 2025-08-07DOI: 10.1007/s10450-025-00644-1
Abdullah Fouad Al Rammah, Ashwin Kumar Rajagopalan, Lev Sarkisov, Flor R. Siperstein
{"title":"Understanding errors in gas adsorption at low pressures: the case of direct air capture","authors":"Abdullah Fouad Al Rammah, Ashwin Kumar Rajagopalan, Lev Sarkisov, Flor R. Siperstein","doi":"10.1007/s10450-025-00644-1","DOIUrl":"10.1007/s10450-025-00644-1","url":null,"abstract":"<div><p>Accurate experimental adsorption equilibrium measurements are necessary for benchmarking adsorbents, validating molecular simulations and setting up process simulations. Although many sources of errors in these measurements have been reported in the literature, the purity of the gas used is generally not considered a major problem as long as research grade gases are used. In this work, we propose that significant deviations in the measured isotherms can potentially arise due to the accumulation of impurities in the measurement cell, especially in the low-pressure region, which is important for systems dealing with low partial pressure, such as <span>(hbox {CO}_2)</span> direct air capture (DAC). We conduct numerical studies to highlight this issue. The first part of our analysis uses the Langmuir isotherm equation to generate baseline isotherms representative of adsorbents with varying affinities for <span>(hbox {CO}_2)</span>, enabling a parametric assessment of impurity effects. This is followed by a material-specific study examining the influence of impurities on isotherms for several zeolites and metal-organic frameworks (MOFs).</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 6","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10450-025-00644-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145162556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdsorptionPub Date : 2025-07-18DOI: 10.1007/s10450-025-00643-2
Ishan Sharma, Daniel Friedrich, Stefano Brandani
{"title":"Two-step evolutionary multi-objective optimisation of pressure swing adsorption processes with monolith columns","authors":"Ishan Sharma, Daniel Friedrich, Stefano Brandani","doi":"10.1007/s10450-025-00643-2","DOIUrl":"10.1007/s10450-025-00643-2","url":null,"abstract":"<div><p>Monolithic adsorbents offer an opportunity to intensity cyclic adsorption processes, but uniformity of channel size and flow distribution have a detrimental effect on separation performance. Mathematical modelling and optimisation techniques require repeated process simulations up to cyclic steady state but the real monolith model representing the response of a distribution of channels is computationally expensive. This study explores the possibility of employing the ideal single channel monolith model to do an initial search, followed by a secondary search with the computationally more complex and more accurate real monolith model. Two case studies have been considered here to cover the different nature of the product of interest (i.e., heavy or light), and whether the optimisation is constrained or unconstrained. For unconstrained optimisation, the optimum decision variable values found with the ideal monolith model are similar to those obtained when only the real monolith model is used for all the functional evaluations (i.e., the real optimum). However, the corresponding objective function values were not the same due to the ideal and real monolith model predictions differing for certain combinations of decision variables. In this case, a quick secondary refinement search with the real monolith model yielded the real optimum objectives. In the case of constrained optimisation, the optimum objective and decision variable values predicted from the initial search differed substantially from the real optimum. Optimum values close to the real optimum could still be obtained with the two-step search strategy. The two-step search strategy required approximately half the computational effort, compared to the approach where only the real monolith model was used for all the evaluations.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 6","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10450-025-00643-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145166404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdsorptionPub Date : 2025-07-14DOI: 10.1007/s10450-025-00641-4
A. Granja-DelRío, I. Cabria
{"title":"Analyzing the gas storage capacities of NU-2100 MOF via GCMC simulations: a material with remarkable hydrogen volumetric storage attributes","authors":"A. Granja-DelRío, I. Cabria","doi":"10.1007/s10450-025-00641-4","DOIUrl":"10.1007/s10450-025-00641-4","url":null,"abstract":"<div><p>Materials capable of effectively storing <span>(hbox {H}_{2})</span> and <span>(hbox {CH}_{4})</span> are essential for the enhancement of hydrogen and methane-based transportation. Metal-Organic Frameworks (MOFs) are strong contenders for meeting the gas storage targets of the Department of Energy (DOE). Many Cu(I)-based MOFs degrade in air and moisture. NU-2100, a newly developed Cu(I)-based MOF, shows air stability. The total and usable <span>(hbox {H}_{2})</span> and <span>(hbox {CH}_{4})</span> storage capacities of NU-2100 at 298.15 K and 0.5–35 MPa are calculated and analyzed by means of Grand Canonical Monte Carlo (GCMC) studies. A comparative assessment is performed, including MOFs with similar metal compositions, pore size, density and porosity at 298.15 K and 25 MPa. The findings demonstrate that NU-2100 exhibits storage capacities that match or outperform the MOFs included in this investigation. The origin of these higher capacities is that the molecules interact with the atoms of NU-2100 in wider regions or pores than in the other MOFs. The autonomy range of a hydrogen and a methane vehicle containing NU-2100 are also calculated. A hydrogen or a methane vehicle storing the gas on this new material would reach the same autonomy as a vehicle storing the gas by compression, using a larger tank volume and lower pressures.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 6","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10450-025-00641-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145165320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}