合成后改性zr基mof处理高COD采出水的研究进展

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Humaira Gul Zaman, Lavania Baloo, Puganeshwary Palaniandy, Mohd Remy Rozainy Mohd Arif Zainol
{"title":"合成后改性zr基mof处理高COD采出水的研究进展","authors":"Humaira Gul Zaman,&nbsp;Lavania Baloo,&nbsp;Puganeshwary Palaniandy,&nbsp;Mohd Remy Rozainy Mohd Arif Zainol","doi":"10.1007/s10450-025-00608-5","DOIUrl":null,"url":null,"abstract":"<div><p>Organic pollution is a major environmental issue that requires the deployment of steps to lower the organic content of water. In this study, Glycidyl methacrylate (GMA) functionalized Zr-MOF was fabricated and employed as a selective adsorbent in PW to reduce COD level. XRD, EDX, BET, PSA and FT-IR were employed to investigate the properties of the synthesized MOF. The synthesized MOF has an enormous surface area of 1144 m<sup>2/</sup>g, a mean pore diameter of 2.84 nm, and an overall pore volume of 0.37 cm<sup>3</sup>/g. Investigating the effects of pH (2–12), contact time (10–120 min), and adsorbent dose (0-2000 mg/L) on COD % removal allowed us to assess the effectiveness of UiO-66-GMA. The results demonstrated that at pH 8 and a 500 mg/L dose of MOF, COD removal efficiency increased from 35.2 to 94.67%. Additionally, as contact time was extended from 10 to 50 min, the removal efficiency improved from 52.78 to 92.4%. Adsorption isotherm analysis revealed that the pseudo-second-order kinetic and Freundlich isothermal models provided a very good match to the adsorption data (R<sup>2</sup> = 0.98). A maximum COD removal efficiency of 96.12% was reported. Based on the current research, it is feasible to draw the conclusion that Zr-functionalized MOFs are an efficient adsorbent for the adsorption of organic contaminants.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into recent advances of post synthetically modified Zr-basedMOF for the treatment of high COD produced water\",\"authors\":\"Humaira Gul Zaman,&nbsp;Lavania Baloo,&nbsp;Puganeshwary Palaniandy,&nbsp;Mohd Remy Rozainy Mohd Arif Zainol\",\"doi\":\"10.1007/s10450-025-00608-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Organic pollution is a major environmental issue that requires the deployment of steps to lower the organic content of water. In this study, Glycidyl methacrylate (GMA) functionalized Zr-MOF was fabricated and employed as a selective adsorbent in PW to reduce COD level. XRD, EDX, BET, PSA and FT-IR were employed to investigate the properties of the synthesized MOF. The synthesized MOF has an enormous surface area of 1144 m<sup>2/</sup>g, a mean pore diameter of 2.84 nm, and an overall pore volume of 0.37 cm<sup>3</sup>/g. Investigating the effects of pH (2–12), contact time (10–120 min), and adsorbent dose (0-2000 mg/L) on COD % removal allowed us to assess the effectiveness of UiO-66-GMA. The results demonstrated that at pH 8 and a 500 mg/L dose of MOF, COD removal efficiency increased from 35.2 to 94.67%. Additionally, as contact time was extended from 10 to 50 min, the removal efficiency improved from 52.78 to 92.4%. Adsorption isotherm analysis revealed that the pseudo-second-order kinetic and Freundlich isothermal models provided a very good match to the adsorption data (R<sup>2</sup> = 0.98). A maximum COD removal efficiency of 96.12% was reported. Based on the current research, it is feasible to draw the conclusion that Zr-functionalized MOFs are an efficient adsorbent for the adsorption of organic contaminants.</p></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"31 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-025-00608-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-025-00608-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

有机污染是一个主要的环境问题,需要采取措施降低水中的有机含量。本研究制备了甲基丙烯酸缩水甘油酯(GMA)功能化Zr-MOF,并将其作为PW中的选择性吸附剂来降低COD水平。采用XRD、EDX、BET、PSA和FT-IR对合成的MOF进行了表征。合成的MOF具有1144 m2/g的巨大表面积,平均孔径为2.84 nm,总孔体积为0.37 cm3/g。研究了pH(2-12)、接触时间(10-120 min)和吸附剂剂量(0-2000 mg/L)对COD %去除率的影响,使我们能够评估UiO-66-GMA的有效性。结果表明,在pH为8、MOF投加量为500 mg/L时,COD去除率由35.2%提高到94.67%。当接触时间由10 min延长至50 min时,去除率由52.78%提高到92.4%。吸附等温分析表明,拟二级动力学模型和Freundlich等温模型与吸附数据吻合较好(R2 = 0.98)。COD去除率最高达96.12%。基于目前的研究,可以得出zr功能化mof是一种有效吸附有机污染物的吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insight into recent advances of post synthetically modified Zr-basedMOF for the treatment of high COD produced water

Organic pollution is a major environmental issue that requires the deployment of steps to lower the organic content of water. In this study, Glycidyl methacrylate (GMA) functionalized Zr-MOF was fabricated and employed as a selective adsorbent in PW to reduce COD level. XRD, EDX, BET, PSA and FT-IR were employed to investigate the properties of the synthesized MOF. The synthesized MOF has an enormous surface area of 1144 m2/g, a mean pore diameter of 2.84 nm, and an overall pore volume of 0.37 cm3/g. Investigating the effects of pH (2–12), contact time (10–120 min), and adsorbent dose (0-2000 mg/L) on COD % removal allowed us to assess the effectiveness of UiO-66-GMA. The results demonstrated that at pH 8 and a 500 mg/L dose of MOF, COD removal efficiency increased from 35.2 to 94.67%. Additionally, as contact time was extended from 10 to 50 min, the removal efficiency improved from 52.78 to 92.4%. Adsorption isotherm analysis revealed that the pseudo-second-order kinetic and Freundlich isothermal models provided a very good match to the adsorption data (R2 = 0.98). A maximum COD removal efficiency of 96.12% was reported. Based on the current research, it is feasible to draw the conclusion that Zr-functionalized MOFs are an efficient adsorbent for the adsorption of organic contaminants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信