Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-03DOI: 10.1007/s11571-024-10196-9
Qiang Meng, Lan Tian, Guoyang Liu, Xue Zhang
{"title":"EEG-based cross-subject passive music pitch perception using deep learning models.","authors":"Qiang Meng, Lan Tian, Guoyang Liu, Xue Zhang","doi":"10.1007/s11571-024-10196-9","DOIUrl":"https://doi.org/10.1007/s11571-024-10196-9","url":null,"abstract":"<p><p>Pitch plays an essential role in music perception and forms the fundamental component of melodic interpretation. However, objectively detecting and decoding brain responses to musical pitch perception across subjects remains to be explored. In this study, we employed electroencephalography (EEG) as an objective measure to obtain the neural responses of musical pitch perception. The EEG signals from 34 subjects under hearing violin sounds at pitches G3 and B6 were collected with an efficient passive Go/No-Go paradigm. The lightweight modified EEGNet model was proposed for EEG-based pitch classification. Specifically, within-subject modeling with the modified EEGNet model was performed to construct individually optimized models. Subsequently, based on the within-subject model pool, a classifier ensemble (CE) method was adopted to construct the cross-subject model. Additionally, we analyzed the optimal time window of brain decoding for pitch perception in the EEG data and discussed the interpretability of these models. The experiment results show that the modified EEGNet model achieved an average classification accuracy of 77% for within-subject modeling, significantly outperforming other compared methods. Meanwhile, the proposed CE method achieved an average accuracy of 74% for cross-subject modeling, significantly exceeding the chance-level accuracy of 50%. Furthermore, we found that the optimal EEG data window for the pitch perception lies 0.4 to 0.9 s onset. These promising results demonstrate that the proposed methods can be effectively used in the objective assessment of pitch perception and have generalization ability in cross-subject modeling.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"6"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sg-snn: a self-organizing spiking neural network based on temporal information.","authors":"Shouwei Gao, Ruixin Zhu, Yu Qin, Wenyu Tang, Hao Zhou","doi":"10.1007/s11571-024-10199-6","DOIUrl":"10.1007/s11571-024-10199-6","url":null,"abstract":"<p><p>Neurodynamic observations indicate that the cerebral cortex evolved by self-organizing into functional networks, These networks, or distributed clusters of regions, display various degrees of attention maps based on input. Traditionally, the study of network self-organization relies predominantly on static data, overlooking temporal information in dynamic neuromorphic data. This paper proposes Temporal Self-Organizing (TSO) method for neuromorphic data processing using a spiking neural network. The TSO method incorporates information from multiple time steps into the selection strategy of the Best Matching Unit (BMU) neurons. It enables the coupled BMUs to radiate the weight across the same layer of neurons, ultimately forming a hierarchical self-organizing topographic map of concern. Additionally, we simulate real neuronal dynamics, introduce a glial cell-mediated Glial-LIF (Leaky Integrate-and-fire) model, and adjust multiple levels of BMUs to optimize the attention topological map.Experiments demonstrate that the proposed Self-organizing Glial Spiking Neural Network (SG-SNN) can generate attention topographies for dynamic event data from coarse to fine. A heuristic method based on cognitive science effectively guides the network's distribution of excitatory regions. Furthermore, the SG-SNN shows improved accuracy on three standard neuromorphic datasets: DVS128-Gesture, CIFAR10-DVS, and N-Caltech 101, with accuracy improvements of 0.3%, 2.4%, and 0.54% respectively. Notably, the recognition accuracy on the DVS128-Gesture dataset reaches 99.3%, achieving state-of-the-art (SOTA) performance.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"14"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-09DOI: 10.1007/s11571-024-10184-z
Qiang Li
{"title":"Visual image reconstructed without semantics from human brain activity using linear image decoders and nonlinear noise suppression.","authors":"Qiang Li","doi":"10.1007/s11571-024-10184-z","DOIUrl":"10.1007/s11571-024-10184-z","url":null,"abstract":"<p><p>In recent years, substantial strides have been made in the field of visual image reconstruction, particularly in its capacity to generate high-quality visual representations from human brain activity while considering semantic information. This advancement not only enables the recreation of visual content but also provides valuable insights into the intricate processes occurring within high-order functional brain regions, contributing to a deeper understanding of brain function. However, considering fusion semantics in reconstructing visual images from brain activity involves semantic-to-image guide reconstruction and may ignore underlying neural computational mechanisms, which does not represent true reconstruction from brain activity. In response to this limitation, our study introduces a novel approach that combines linear mapping with nonlinear noise suppression to reconstruct visual images perceived by subjects based on their brain activity patterns. The primary challenge associated with linear mapping lies in its susceptibility to noise interference. To address this issue, we leverage a flexible denoised deep convolutional neural network, which can suppress noise from linear mapping. Our investigation encompasses linear mapping as well as the training of shallow and deep autoencoder denoised neural networks, including a pre-trained, state-of-the-art denoised neural network. The outcome of our study reveals that combining linear image decoding with nonlinear noise reduction significantly enhances the quality of reconstructed images from human brain activity. This suggests that our methodology holds promise for decoding intricate perceptual experiences directly from brain activity patterns without semantic information. Moreover, the model has strong neural explanatory power because it shares structural and functional similarities with the visual brain.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"20"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-13DOI: 10.1007/s11571-024-10212-y
Rituparna Bhattacharyya, Brajesh Kumar Jha
{"title":"A fuzzy based computational model to analyze the influence of mitochondria, buffer, and ER fluxes on cytosolic calcium distribution in neuron cells.","authors":"Rituparna Bhattacharyya, Brajesh Kumar Jha","doi":"10.1007/s11571-024-10212-y","DOIUrl":"10.1007/s11571-024-10212-y","url":null,"abstract":"<p><p>A free calcium ion in the cytosol is essential for many physiological and physical functions. Also, it is known as a second messenger as the quantity of free calcium ions is an essential part of brain signaling. In this work, we have attempted to study calcium signaling in the presence of mitochondria, buffer, and endoplasmic reticulum fluxes. Small organelles called mitochondria are found in the nervous system and are involved in several cellular functions, including energy production, response to stress, calcium homeostasis regulation, and pathways leading to cell death. It has been discovered that buffer, endoplasmic reticulum, and mitochondria significantly affect calcium signaling. To investigate how various circumstances impact the quantity of calcium in the cytosol, a mathematical model of a second-order linear partial differential equation with fuzzy boundary conditions has been developed. Systems having ambiguous or imprecise boundary values can be effectively modeled and simulated with the help of fuzzy boundary conditions. Models can provide more dependable and instructive outcomes and become adaptable to real-world circumstances by implementing fuzzy logic into boundary conditions. In this paper, we observed the Fuzzy Laplace Transform to solve variable coefficient fuzzy differential equations using triangular fuzzy numbers. It is noted that maintaining the delicate calcium ion balance, which controls essential cellular functions, depends on the buffer affinity. Also, neurodegenerative illnesses like Alzheimer's, Parkinson's, etc. are linked to disruptions in the control of components such as buffers, mitochondria, and the endoplasmic reticulum.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"25"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The potential associations between acupuncture sensation and brain functional network: a EEG study.","authors":"Dongyang Shen, Banghua Yang, Jing Li, Jiayang Zhang, Yongcong Li, Guofu Zhang, Yanyan Zheng","doi":"10.1007/s11571-025-10233-1","DOIUrl":"10.1007/s11571-025-10233-1","url":null,"abstract":"<p><p>Acupuncture has been widely used as an effective treatment for post-stroke rehabilitation. However, the potential association between acupuncture sensation, an important factor influencing treatment efficacy, and brain functional network is unclear. This research sought to reveal and quantify the changes in brain functional network associated with acupuncture sensation. So multi-channel EEG signals were collected from 30 healthy participants and the Massachusetts General Hospital Acupuncture Sensation Scale (MASS) was utilized to assess their needling sensations. Phase Lag Index (PLI) was used to construct the brain functional network, which was analyzed with graph theoretic methods. It showed that in the needle insertion (NI) state the MASS Index was significantly higher than in the needle retention (NR) state (<i>P</i> < 0.001), and the mean values of PLI were also higher than in the Pre-Rest state and NR state significantly (<i>P</i> < 0.01). In the NI state global efficiency, local efficiency, nodal efficiency, and degree centrality were significantly higher than in the Pre-Rest state and the NR state (<i>P</i> < 0.05), while the opposite is true for the shortest path length (<i>P</i> < 0.01). Then Pearson correlation analysis showed a correlation between MASS Index and graph theory metrics (<i>P</i> < 0.05). Finally, Support Vector Regression (SVR) was used to predict the MASS Index with a minimum mean absolute error of 0.65. These findings suggest that the NI state of acupuncture treatment changes the structure of the brain functional network and affects the graph theory metrics of the brain functional network, which may be an objective biomarker for quantitative evaluation of acupuncture sensation.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-025-10233-1.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"49"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143647571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Statement of Retraction: Myricetin nanoliposomes induced SIRT3-mediated glycolytic metabolism leading to glioblastoma cell death.","authors":"","doi":"10.1080/21691401.2025.2465942","DOIUrl":"https://doi.org/10.1080/21691401.2025.2465942","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"56"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143717889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcriptome and nutritional composition analysis of stacked transgenic maize with insect resistance and herbicide tolerance.","authors":"Xiaoxing Yu, Hongyu Gao, Pengfei Wang","doi":"10.1080/21645698.2025.2472451","DOIUrl":"10.1080/21645698.2025.2472451","url":null,"abstract":"<p><p>The safety assessment of stacked transgenic crops is essential for their commercial cultivation. A crucial element of safety assessment is the nutritional evaluation of transgenic crops. Currently, profiling methods like transcriptome are employed as supplemental analytical tools to find the unintended effects of transgenic crops. In this study, stacked transgenic maize ZDRF8×nCX-1 was produced by crossing of two transgenic maize events ZDRF8 and nCX-1. This stacked transgenic maize expresses five genes: <i>cry1Ab</i>, <i>cry2Ab</i> and <i>g10evo-epsps</i> (from ZDRF8), as well as <i>cp4 epsps</i> and <i>P450-N-Z1</i> (from nCX-1). Molecular analysis showed that the insertion sites of target genes were not changed during stack breeding, and the target genes are effectively expressed at both RNA and protein levels in ZDRF8×nCX-1. Target trait analysis showed that ZDRF8×nCX-1 exhibits tolerant to glyphosate, flazasulfuron and MCPA, and is resistant to damage by corn borers. Transcriptome analysis revealed that gene-stacked maize ZDRF8×nCX-1 did not significantly alter transcriptome profiles compared to the transgenic maize events ZDRF8 and nCX-1. Nutritional composition analysis showed that the grain profile of ZDRF8×nCX-1 was substantially equivalent to that of the non-transgenic counterpart. These results suggest that hybrid stacking does not cause significantly unintended effects beyond providing the intended beneficial traits.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"16 1","pages":"216-234"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143525246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Svante Resjö, Iqra, Nam P Kieu, Muhammad Awais Zahid, Marit Lenman, Björn Andersson, Erik Andreasson
{"title":"Late blight field resistance in potatoes carrying <i>Solanum americanum</i> resistance genes (Rpi-amr3 and Rpi-amr1).","authors":"Svante Resjö, Iqra, Nam P Kieu, Muhammad Awais Zahid, Marit Lenman, Björn Andersson, Erik Andreasson","doi":"10.1080/21645698.2025.2479913","DOIUrl":"10.1080/21645698.2025.2479913","url":null,"abstract":"<p><p>Potato (<i>Solanum tuberosum</i> L.) is an important global crop, but its production is severely impacted by late blight, caused by the pathogen <i>Phytophthora infestans</i>. The economic burden of this disease is significant, and current control strategies rely mainly on fungicides, which face increasing regulatory and environmental constraints. To address this challenge, potatoes with resistance genes from wild potato relatives offer a promising solution. This study evaluated field resistance to late blight in potato lines (Maris Piper) containing the <i>Solanum americanum</i> resistance genes <i>Rpi-amr3</i> and <i>Rpi-amr1</i> across three years (2018-2020) in Sweden. Field trials were conducted under natural infection conditions to assess disease resistance. Results showed that the transgenic lines conferred strong resistance to late blight compared to the susceptible control. However, slight late blight symptoms were observed in the transgenic lines. These results highlight the effectiveness of <i>S. americanum</i> resistance genes in providing strong resistance, and emphasize the potential of stacking multiple R genes, including these genes to maintain efficacy. This research supports the development of resistant potato varieties as a sustainable alternative to chemical control, promoting food security and environmentally friendly agriculture.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"16 1","pages":"263-271"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143694331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-04-19DOI: 10.1007/s11571-025-10241-1
Fanghai Zhang, Changlin Zhan
{"title":"Multiple generalized stability of nonlinear delayed systems subject to impulsive disturbance.","authors":"Fanghai Zhang, Changlin Zhan","doi":"10.1007/s11571-025-10241-1","DOIUrl":"https://doi.org/10.1007/s11571-025-10241-1","url":null,"abstract":"<p><p>The multiple generalized stability of nonlinear systems with impulsive disturbance and distributed delays is studied in this paper. By using the state space partition method, the number of multiple equilibrium points for <i>n</i>-dimensional system is given by <math> <mrow><msubsup><mo>∏</mo> <mrow><mi>i</mi> <mo>=</mo> <mn>1</mn></mrow> <mi>n</mi></msubsup> <mrow><mo>(</mo> <mn>2</mn> <msub><mi>K</mi> <mi>i</mi></msub> <mo>+</mo> <mn>1</mn> <mo>)</mo></mrow> </mrow> </math> with integer <math> <mrow><msub><mi>K</mi> <mi>i</mi></msub> <mo>≥</mo> <mn>0</mn></mrow> </math> , and the sufficient conditions for generalized stability of <math> <mrow><msubsup><mo>∏</mo> <mrow><mi>i</mi> <mo>=</mo> <mn>1</mn></mrow> <mi>n</mi></msubsup> <mrow><mo>(</mo> <msub><mi>K</mi> <mi>i</mi></msub> <mo>+</mo> <mn>1</mn> <mo>)</mo></mrow> </mrow> </math> equilibrium points are derived. Finally, the theoretical results are illustrated by using the simulations of an example.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"64"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12009267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143961756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}