工程技术最新文献

筛选
英文 中文
Purinergic ecto-enzymes in human and ovine aortic valves: indicators of bacterial nanocellulose scaffold cellularization. 人和羊主动脉瓣的嘌呤能外泌酶:细菌纳米纤维素支架细胞化的指标。
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2025-12-01 Epub Date: 2025-05-12 DOI: 10.1080/21691401.2025.2502033
Barbara Kutryb-Zając, Ada Kawecka, Gabriela Harasim, Michał Bieńkowski, Klaudia Stawarska, Krzysztof Urbanowicz, Ryszard T Smoleński, Maciej M Kowalik, Magdalena Kołaczkowska, Piotr Siondalski
{"title":"Purinergic ecto-enzymes in human and ovine aortic valves: indicators of bacterial nanocellulose scaffold cellularization.","authors":"Barbara Kutryb-Zając, Ada Kawecka, Gabriela Harasim, Michał Bieńkowski, Klaudia Stawarska, Krzysztof Urbanowicz, Ryszard T Smoleński, Maciej M Kowalik, Magdalena Kołaczkowska, Piotr Siondalski","doi":"10.1080/21691401.2025.2502033","DOIUrl":"https://doi.org/10.1080/21691401.2025.2502033","url":null,"abstract":"<p><p>Purinergic signalling pathways play a vital role in the biological functions of the aortic valve (AV) through nucleotide and adenosine-dependent receptor effects. This study focused on characterizing a side-specific purinergic cascade in human non-stenotic and stenotic AVs, ovine native AVs and a novel bacterial nanocellulose (BNC) bio-prosthesis in an ovine model. Human stenotic AVs were collected during replacement surgeries, while non-stenotic AVs came from heart transplant patients. Ovine native AVs were sourced from domestic sheep, and the BNC prosthesis was implanted in the ovine aorta for six months, with hemodynamic monitoring throughout. Biochemical assessments revealed a beneficial ecto-enzyme pattern in non-stenotic and native AVs, contrasting with a detrimental pattern in stenotic valves. The BNC prosthesis demonstrated significantly lower nucleotide conversion activities than native valves and displayed increased peripheral blood mononuclear cell adhesion on its aortic surface. These findings suggest that nucleotide-converting ecto-enzymes could serve as markers for the biological activity of AV prostheses, highlighting the need for further studies to enhance the cellularization of BNC prostheses, potentially through adenosine-releasing scaffold modifications.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"219-230"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143958081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alterations of synaptic plasticity and brain oscillation are associated with autophagy induced synaptic pruning during adolescence. 突触可塑性的改变和大脑振荡与青春期自噬诱导的突触修剪有关。
IF 3.1 3区 工程技术
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2024-12-31 DOI: 10.1007/s11571-024-10185-y
Hui Wang, Xiaxia Xu, Zhuo Yang, Tao Zhang
{"title":"Alterations of synaptic plasticity and brain oscillation are associated with autophagy induced synaptic pruning during adolescence.","authors":"Hui Wang, Xiaxia Xu, Zhuo Yang, Tao Zhang","doi":"10.1007/s11571-024-10185-y","DOIUrl":"10.1007/s11571-024-10185-y","url":null,"abstract":"<p><p>Adolescent brain development is characterized by significant anatomical and physiological alterations, but little is known whether and how these alterations impact the neural network. Here we investigated the development of functional networks by measuring synaptic plasticity and neural synchrony of local filed potentials (LFPs), and further explored the underlying mechanisms. LFPs in the hippocampus were recorded in young (21 ~ 25 days), adolescent (1.5 months) and adult (3 months) rats. Long term potentiation (LTP) and neural synchrony were analyzed. The results showed that the LTP was the lowest in adolescent rats. During development, the theta coupling strength was increased progressively but there was no significant change of gamma coupling between young rats and adolescent rats. The density of dendrite spines was decreased progressively during development. The lowest levels of NR2A, NR2B and PSD95 were detected in adolescent rats. Importantly, it was found that the expression levels of autophagy markers were the highest during adolescent compared to that in other developmental stages. Moreover, there were more co-localization of autophagosome and PSD95 in adolescent rats. It suggests that autophagy is possibly involved in synaptic elimination during adolescence, and further impacts synaptic plasticity and neural synchrony.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"2"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142920782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beta-band oscillations and spike-local field potential synchronization in the motor cortex are correlated with movement deficits in an exercise-induced fatigue mouse model. 在运动诱导疲劳小鼠模型中,运动皮层的β带振荡和峰-局部场电位同步与运动缺陷相关。
IF 3.1 3区 工程技术
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2024-12-31 DOI: 10.1007/s11571-024-10182-1
Xudong Zhao, Hualin Wang, Ke Li, Shanguang Chen, Lijuan Hou
{"title":"Beta-band oscillations and spike-local field potential synchronization in the motor cortex are correlated with movement deficits in an exercise-induced fatigue mouse model.","authors":"Xudong Zhao, Hualin Wang, Ke Li, Shanguang Chen, Lijuan Hou","doi":"10.1007/s11571-024-10182-1","DOIUrl":"10.1007/s11571-024-10182-1","url":null,"abstract":"<p><p>Fatigue, a complex and multifaceted symptom, profoundly influences quality of life, particularly among individuals suffering from chronic medical conditions or neurological disorders. This symptom not only exacerbates existing conditions but also hinders daily functioning, thereby perpetuating a vicious cycle of worsening symptoms and reduced physical activity. Given the pivotal role of the motor cortex (M1) in coordinating and executing voluntary movements, understanding how the cortex regulates fatigue is crucial. Despite its importance, the neural mechanisms underlying fatigue remain inadequately explored. In this study, we employed electrophysiological recordings in the M1 region of mice to investigate how excitation-inhibition dynamics and neural oscillations are regulated during exercise-induced fatigue. We observed that fatigue led to decreased voluntary physical activity and cognitive performance, manifesting as reduced running wheel distance, mean speed, exercise intensity, and exploratory behaviour. At the neural level, we detected increased firing frequencies for M1 neurons, including both pyramidal neurons and interneurons, along with heightened beta-band oscillatory activity and stronger coupling between beta-band oscillations and interneurons. These findings enhance our understanding of the mechanisms underlying fatigue, offering insights into behavioural, excitability, and oscillatory changes. The results of this study could pave the way for the development of novel intervention strategies to combat fatigue.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"3"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688262/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142920741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EEG-based cross-subject passive music pitch perception using deep learning models. 基于脑电图的跨学科被动音乐音高感知,使用深度学习模型。
IF 3.1 3区 工程技术
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-01-03 DOI: 10.1007/s11571-024-10196-9
Qiang Meng, Lan Tian, Guoyang Liu, Xue Zhang
{"title":"EEG-based cross-subject passive music pitch perception using deep learning models.","authors":"Qiang Meng, Lan Tian, Guoyang Liu, Xue Zhang","doi":"10.1007/s11571-024-10196-9","DOIUrl":"10.1007/s11571-024-10196-9","url":null,"abstract":"<p><p>Pitch plays an essential role in music perception and forms the fundamental component of melodic interpretation. However, objectively detecting and decoding brain responses to musical pitch perception across subjects remains to be explored. In this study, we employed electroencephalography (EEG) as an objective measure to obtain the neural responses of musical pitch perception. The EEG signals from 34 subjects under hearing violin sounds at pitches G3 and B6 were collected with an efficient passive Go/No-Go paradigm. The lightweight modified EEGNet model was proposed for EEG-based pitch classification. Specifically, within-subject modeling with the modified EEGNet model was performed to construct individually optimized models. Subsequently, based on the within-subject model pool, a classifier ensemble (CE) method was adopted to construct the cross-subject model. Additionally, we analyzed the optimal time window of brain decoding for pitch perception in the EEG data and discussed the interpretability of these models. The experiment results show that the modified EEGNet model achieved an average classification accuracy of 77% for within-subject modeling, significantly outperforming other compared methods. Meanwhile, the proposed CE method achieved an average accuracy of 74% for cross-subject modeling, significantly exceeding the chance-level accuracy of 50%. Furthermore, we found that the optimal EEG data window for the pitch perception lies 0.4 to 0.9 s onset. These promising results demonstrate that the proposed methods can be effectively used in the objective assessment of pitch perception and have generalization ability in cross-subject modeling.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"6"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visual image reconstructed without semantics from human brain activity using linear image decoders and nonlinear noise suppression. 利用线性图像解码器和非线性噪声抑制技术对人脑活动进行无语义的视觉图像重建。
IF 3.1 3区 工程技术
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-01-09 DOI: 10.1007/s11571-024-10184-z
Qiang Li
{"title":"Visual image reconstructed without semantics from human brain activity using linear image decoders and nonlinear noise suppression.","authors":"Qiang Li","doi":"10.1007/s11571-024-10184-z","DOIUrl":"10.1007/s11571-024-10184-z","url":null,"abstract":"<p><p>In recent years, substantial strides have been made in the field of visual image reconstruction, particularly in its capacity to generate high-quality visual representations from human brain activity while considering semantic information. This advancement not only enables the recreation of visual content but also provides valuable insights into the intricate processes occurring within high-order functional brain regions, contributing to a deeper understanding of brain function. However, considering fusion semantics in reconstructing visual images from brain activity involves semantic-to-image guide reconstruction and may ignore underlying neural computational mechanisms, which does not represent true reconstruction from brain activity. In response to this limitation, our study introduces a novel approach that combines linear mapping with nonlinear noise suppression to reconstruct visual images perceived by subjects based on their brain activity patterns. The primary challenge associated with linear mapping lies in its susceptibility to noise interference. To address this issue, we leverage a flexible denoised deep convolutional neural network, which can suppress noise from linear mapping. Our investigation encompasses linear mapping as well as the training of shallow and deep autoencoder denoised neural networks, including a pre-trained, state-of-the-art denoised neural network. The outcome of our study reveals that combining linear image decoding with nonlinear noise reduction significantly enhances the quality of reconstructed images from human brain activity. This suggests that our methodology holds promise for decoding intricate perceptual experiences directly from brain activity patterns without semantic information. Moreover, the model has strong neural explanatory power because it shares structural and functional similarities with the visual brain.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"20"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sg-snn: a self-organizing spiking neural network based on temporal information. Sg-snn:基于时间信息的自组织尖峰神经网络。
IF 3.1 3区 工程技术
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-01-09 DOI: 10.1007/s11571-024-10199-6
Shouwei Gao, Ruixin Zhu, Yu Qin, Wenyu Tang, Hao Zhou
{"title":"Sg-snn: a self-organizing spiking neural network based on temporal information.","authors":"Shouwei Gao, Ruixin Zhu, Yu Qin, Wenyu Tang, Hao Zhou","doi":"10.1007/s11571-024-10199-6","DOIUrl":"10.1007/s11571-024-10199-6","url":null,"abstract":"<p><p>Neurodynamic observations indicate that the cerebral cortex evolved by self-organizing into functional networks, These networks, or distributed clusters of regions, display various degrees of attention maps based on input. Traditionally, the study of network self-organization relies predominantly on static data, overlooking temporal information in dynamic neuromorphic data. This paper proposes Temporal Self-Organizing (TSO) method for neuromorphic data processing using a spiking neural network. The TSO method incorporates information from multiple time steps into the selection strategy of the Best Matching Unit (BMU) neurons. It enables the coupled BMUs to radiate the weight across the same layer of neurons, ultimately forming a hierarchical self-organizing topographic map of concern. Additionally, we simulate real neuronal dynamics, introduce a glial cell-mediated Glial-LIF (Leaky Integrate-and-fire) model, and adjust multiple levels of BMUs to optimize the attention topological map.Experiments demonstrate that the proposed Self-organizing Glial Spiking Neural Network (SG-SNN) can generate attention topographies for dynamic event data from coarse to fine. A heuristic method based on cognitive science effectively guides the network's distribution of excitatory regions. Furthermore, the SG-SNN shows improved accuracy on three standard neuromorphic datasets: DVS128-Gesture, CIFAR10-DVS, and N-Caltech 101, with accuracy improvements of 0.3%, 2.4%, and 0.54% respectively. Notably, the recognition accuracy on the DVS128-Gesture dataset reaches 99.3%, achieving state-of-the-art (SOTA) performance.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"14"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fuzzy based computational model to analyze the influence of mitochondria, buffer, and ER fluxes on cytosolic calcium distribution in neuron cells. 一个基于模糊的计算模型来分析线粒体、缓冲液和内质网通量对神经元细胞胞质钙分布的影响。
IF 3.1 3区 工程技术
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-01-13 DOI: 10.1007/s11571-024-10212-y
Rituparna Bhattacharyya, Brajesh Kumar Jha
{"title":"A fuzzy based computational model to analyze the influence of mitochondria, buffer, and ER fluxes on cytosolic calcium distribution in neuron cells.","authors":"Rituparna Bhattacharyya, Brajesh Kumar Jha","doi":"10.1007/s11571-024-10212-y","DOIUrl":"10.1007/s11571-024-10212-y","url":null,"abstract":"<p><p>A free calcium ion in the cytosol is essential for many physiological and physical functions. Also, it is known as a second messenger as the quantity of free calcium ions is an essential part of brain signaling. In this work, we have attempted to study calcium signaling in the presence of mitochondria, buffer, and endoplasmic reticulum fluxes. Small organelles called mitochondria are found in the nervous system and are involved in several cellular functions, including energy production, response to stress, calcium homeostasis regulation, and pathways leading to cell death. It has been discovered that buffer, endoplasmic reticulum, and mitochondria significantly affect calcium signaling. To investigate how various circumstances impact the quantity of calcium in the cytosol, a mathematical model of a second-order linear partial differential equation with fuzzy boundary conditions has been developed. Systems having ambiguous or imprecise boundary values can be effectively modeled and simulated with the help of fuzzy boundary conditions. Models can provide more dependable and instructive outcomes and become adaptable to real-world circumstances by implementing fuzzy logic into boundary conditions. In this paper, we observed the Fuzzy Laplace Transform to solve variable coefficient fuzzy differential equations using triangular fuzzy numbers. It is noted that maintaining the delicate calcium ion balance, which controls essential cellular functions, depends on the buffer affinity. Also, neurodegenerative illnesses like Alzheimer's, Parkinson's, etc. are linked to disruptions in the control of components such as buffers, mitochondria, and the endoplasmic reticulum.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"25"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The potential associations between acupuncture sensation and brain functional network: a EEG study. 针刺感觉与脑功能网络之间的潜在联系:脑电图研究。
IF 3.1 3区 工程技术
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-03-15 DOI: 10.1007/s11571-025-10233-1
Dongyang Shen, Banghua Yang, Jing Li, Jiayang Zhang, Yongcong Li, Guofu Zhang, Yanyan Zheng
{"title":"The potential associations between acupuncture sensation and brain functional network: a EEG study.","authors":"Dongyang Shen, Banghua Yang, Jing Li, Jiayang Zhang, Yongcong Li, Guofu Zhang, Yanyan Zheng","doi":"10.1007/s11571-025-10233-1","DOIUrl":"10.1007/s11571-025-10233-1","url":null,"abstract":"<p><p>Acupuncture has been widely used as an effective treatment for post-stroke rehabilitation. However, the potential association between acupuncture sensation, an important factor influencing treatment efficacy, and brain functional network is unclear. This research sought to reveal and quantify the changes in brain functional network associated with acupuncture sensation. So multi-channel EEG signals were collected from 30 healthy participants and the Massachusetts General Hospital Acupuncture Sensation Scale (MASS) was utilized to assess their needling sensations. Phase Lag Index (PLI) was used to construct the brain functional network, which was analyzed with graph theoretic methods. It showed that in the needle insertion (NI) state the MASS Index was significantly higher than in the needle retention (NR) state (<i>P</i> < 0.001), and the mean values of PLI were also higher than in the Pre-Rest state and NR state significantly (<i>P</i> < 0.01). In the NI state global efficiency, local efficiency, nodal efficiency, and degree centrality were significantly higher than in the Pre-Rest state and the NR state (<i>P</i> < 0.05), while the opposite is true for the shortest path length (<i>P</i> < 0.01). Then Pearson correlation analysis showed a correlation between MASS Index and graph theory metrics (<i>P</i> < 0.05). Finally, Support Vector Regression (SVR) was used to predict the MASS Index with a minimum mean absolute error of 0.65. These findings suggest that the NI state of acupuncture treatment changes the structure of the brain functional network and affects the graph theory metrics of the brain functional network, which may be an objective biomarker for quantitative evaluation of acupuncture sensation.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-025-10233-1.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"49"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143647571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple generalized stability of nonlinear delayed systems subject to impulsive disturbance. 脉冲扰动下非线性时滞系统的多重广义稳定性。
IF 3.1 3区 工程技术
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-04-19 DOI: 10.1007/s11571-025-10241-1
Fanghai Zhang, Changlin Zhan
{"title":"Multiple generalized stability of nonlinear delayed systems subject to impulsive disturbance.","authors":"Fanghai Zhang, Changlin Zhan","doi":"10.1007/s11571-025-10241-1","DOIUrl":"10.1007/s11571-025-10241-1","url":null,"abstract":"<p><p>The multiple generalized stability of nonlinear systems with impulsive disturbance and distributed delays is studied in this paper. By using the state space partition method, the number of multiple equilibrium points for <i>n</i>-dimensional system is given by <math> <mrow><msubsup><mo>∏</mo> <mrow><mi>i</mi> <mo>=</mo> <mn>1</mn></mrow> <mi>n</mi></msubsup> <mrow><mo>(</mo> <mn>2</mn> <msub><mi>K</mi> <mi>i</mi></msub> <mo>+</mo> <mn>1</mn> <mo>)</mo></mrow> </mrow> </math> with integer <math> <mrow><msub><mi>K</mi> <mi>i</mi></msub> <mo>≥</mo> <mn>0</mn></mrow> </math> , and the sufficient conditions for generalized stability of <math> <mrow><msubsup><mo>∏</mo> <mrow><mi>i</mi> <mo>=</mo> <mn>1</mn></mrow> <mi>n</mi></msubsup> <mrow><mo>(</mo> <msub><mi>K</mi> <mi>i</mi></msub> <mo>+</mo> <mn>1</mn> <mo>)</mo></mrow> </mrow> </math> equilibrium points are derived. Finally, the theoretical results are illustrated by using the simulations of an example.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"64"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12009267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143961756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coherence resonance, parameter estimation and self-regulation in a thermalsensitive neuron. 热敏神经元的相干共振、参数估计和自我调节。
IF 3.1 3区 工程技术
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-05-19 DOI: 10.1007/s11571-025-10258-6
Qun Guo, Ping Zhou, Xiaofeng Zhang, Zhigang Zhu
{"title":"Coherence resonance, parameter estimation and self-regulation in a thermalsensitive neuron.","authors":"Qun Guo, Ping Zhou, Xiaofeng Zhang, Zhigang Zhu","doi":"10.1007/s11571-025-10258-6","DOIUrl":"10.1007/s11571-025-10258-6","url":null,"abstract":"<p><p>In this work, two capacitors connected by a thermistor are used to explore the electrical property of double-layer membrane in a neuron, which the membrane property is sensitive to changes of temperature and two capacitive variables are used to measure the potentials of inner and outer membrane. The circuit characteristics and energy definition for the neural circuit and its equivalent neuron model in oscillator form are clarified from physical aspect. Considering the shape deformation of cell membrane under external physical stimuli and energy injection, intrinsic parameters of the neuron can be controlled with adaptive growth under energy flow, an adaptive control law is proposed to regulate the firing modes accompanying with energy shift. In presence of noisy excitation, coherence resonance can be induced and confirmed by taming the noise intensity carefully. The distributions of <i>CV</i> (coefficient variability) and average energy value < <i>H</i> > vs. noise intensity provide a feasible way to predict the coherence resonance and even stochastic resonance in the neural activities. Adaptive parameter observers are designed to identify the unknown parameters in this neuron model. The research findings of this study lay a foundation for the design of temperature-adaptive biomimetic neuromorphic devices and the research on multi-functional perception neural networks with temperature sensitivity.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"75"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089602/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144119136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信