Granular MatterPub Date : 2023-07-14DOI: 10.1007/s10035-023-01342-x
Yan Chen, Huajia Zhong, Kai Zhang, Meng Chen
{"title":"Dissipation behavior of granular balls in a rotating closed cylinder","authors":"Yan Chen, Huajia Zhong, Kai Zhang, Meng Chen","doi":"10.1007/s10035-023-01342-x","DOIUrl":"10.1007/s10035-023-01342-x","url":null,"abstract":"<div><p>The discrete element method is used to study the dissipation behavior of the granular balls in a rotating closed cylinder under the Earth gravity environment, and five kinds of particle motion forms with different dissipation characteristics are obtained. These phases are slumping, rolling, cascading, cataracting and centrifuging. Combined with the simulation of the dissipation behavior of the granular system under the Mars and Moon environment, the universality and the mechanism of the high dissipation effect of the cataracting phase is studied. In addition, based on the dissipation behavior of the granular balls in the rotating closed cylinder, the optimization design of the autogenous mill lifter is studied, and finally a design method of the structure parameters of the autogenous mill based on the material dissipation behavior is proposed.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 3","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4573287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Granular MatterPub Date : 2023-07-12DOI: 10.1007/s10035-023-01336-9
Holger Götz, Thorsten Pöschel
{"title":"Granular meta-material: response of a bending beam","authors":"Holger Götz, Thorsten Pöschel","doi":"10.1007/s10035-023-01336-9","DOIUrl":"10.1007/s10035-023-01336-9","url":null,"abstract":"<div><p>Jammed granular matter can be considered a meta-material that behaves viscoelastic for small deformations. We characterize the elastic properties of the meta-material through the response of a simply supported bending beam consisting of jammed granular matter under weak load and quasistatic deformation.</p></div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 3","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-023-01336-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4494322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Granular MatterPub Date : 2023-07-11DOI: 10.1007/s10035-023-01345-8
Mandeep Singh Basson, Alejandro Martinez
{"title":"Numerical and experimental estimation of anisotropy in granular soils using multi-orientation shear wave velocity measurements","authors":"Mandeep Singh Basson, Alejandro Martinez","doi":"10.1007/s10035-023-01345-8","DOIUrl":"10.1007/s10035-023-01345-8","url":null,"abstract":"<div><p>Soils can have direction-dependent characteristics reflected in the anisotropy of their responses. Studies have demonstrated the impact of the stress state and history (i.e., stress-induced anisotropy) and the depositional processes and particle arrangements (i.e., fabric-induced anisotropy) on the anisotropy of macroscopic behaviors. However, quantifying the stress- and fabric-induced anisotropies remains a challenge. This study presents two investigations on the effects of stress- and fabric-induced anisotropy on the anisotropy of shear wave velocity (V<sub>S</sub>). A framework based on the V<sub>S</sub> measurements along various orientations and polarization planes obtained from discrete element method (DEM) simulations and experimental bender element (BE) tests is presented; this framework is tested using the results from specimens of spherical and non-spherical particles under isotropic and 1D compression. The observed trends indicate that the angular distributions of V<sub>S</sub> are related to the angular distributions of particle alignment and interparticle contact forces. This framework, when presented in terms of the ratio of V<sub>S</sub> measurements along different orientations and polarization planes and of the newly introduced Anisotropy parameter (A<sub>e</sub>), can assist in evaluating the stress- and fabric-induced anisotropy of soil specimens. The results also highlight the challenges in discerning the effects of stress and fabric anisotropy when both influence the soil response.</p><h3>Graphical abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 3","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4461683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Granular MatterPub Date : 2023-07-11DOI: 10.1007/s10035-023-01351-w
Wei Weijie, Pan Weidong, Zhang Jinwang, Zhao Zhining, Yang Liu, Zhang Xiangyang
{"title":"Dynamic sublevel caving technology for thick seams with large dip angle in longwall top coal caving (LTCC)","authors":"Wei Weijie, Pan Weidong, Zhang Jinwang, Zhao Zhining, Yang Liu, Zhang Xiangyang","doi":"10.1007/s10035-023-01351-w","DOIUrl":"10.1007/s10035-023-01351-w","url":null,"abstract":"<div><p>Dynamic sublevel caving technology (DSCT) proposed by the researchers is one of effective methods to solve the problems of low top coal recovery, poor drawing balance and support stability in longwall top coal caving (LTCC) with large dip angle. To investigate the reasonable number of supports in a sublevel (<i>N</i>) and the top coal drawing mechanisms under DSCT, this research takes Panel 7401 in Zouzhuang Coal Mine as the geological background. Firstly, the optimal threshold value of <i>N</i> is theoretically analyzed, and the numerical simulations of drawing experiments under different <i>N</i>s are calculated. The results show that when <i>N</i> = 3, the top coal recovery is the highest, the number of excessive drawing top coal at the upper end is relatively small, and the drawing balance is great, which is conducive to improving the resource recovery and safety management. With increasing <i>N</i>, the over-development of right top coal boundary towards the upper end increases, the range of coal ridge in the lower sublevel also gradually increases, while the strong force chain area at the upper end gradually decreases, resulting in the support stability becoming worse. In addition, the displacement of top coal at the upper end gradually increases with increasing <i>N</i>, and the permanent loss feature of residual top coal exists in the upper sublevel. The field top coal recovery under DSCT was measured finally, obtaining that DSCT can improve the top coal recovery by about 5% and promote the stability and working efficiency of the support. The research results have great theoretical and guiding significance for the high yield and high efficiency LTCC technology for thick coal seam with large dip angle.\u0000</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 3","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-023-01351-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4464826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Granular MatterPub Date : 2023-06-29DOI: 10.1007/s10035-023-01339-6
Kazem Fakharian, Farzad Kaviani-Hamedani, Ali Sooraki, Mostafa Amindehghan, Ali Lashkari
{"title":"Continuous bidirectional shear moduli monitoring and micro X-ray CT to evaluate fabric evolution under different stress paths","authors":"Kazem Fakharian, Farzad Kaviani-Hamedani, Ali Sooraki, Mostafa Amindehghan, Ali Lashkari","doi":"10.1007/s10035-023-01339-6","DOIUrl":"10.1007/s10035-023-01339-6","url":null,"abstract":"<div><p>Fabric evolution monitoring of sandy specimens during shearing up to critical state is characterized by continuous, bidirectional shear wave velocity measurements along the vertical and horizontal directions <i>(V&H).</i> The specimens are prepared by water sedimentation methods and then subjected to drained compression and extension loading paths. The results exhibit a significant differences between shear wave velocities in two orthogonal directions, and subsequently shear moduli, as shear develops. Not only do the differences between shear wave velocities in V and H directions illuminate a severe and increasing soil anisotropy during the shearing, but the results also signify promising information related to the current fabric and stress state. Comparison between compression and extension results highlight different fabric evolution trends and consequently dissimilar fabric states at the critical state. Considering the conforming results with recent findings on the basis of the discrete element method (DEM), the proposed method can be used as an experimental method facilitating the macroscopic investigation of the effects of fabric anisotropy on the soil elastic response. The fabric anisotropy and its evolution are assessed consecutively using three methods, including quantitative evaluation of shear moduli, proposing a fabric function to account for the soil fabric, and 3D microscopic inspection of Micro-CT slices<i>.</i> The findings of the mentioned methods agree on the importance of fabric anisotropy in shear wave propagation and microscopic variations towards the critical state evolving from the initial state to dissimilar anisotropic states at the critical state under different shear modes.</p></div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 3","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5121673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Granular MatterPub Date : 2023-06-28DOI: 10.1007/s10035-023-01341-y
Usman Ali, Mamoru Kikumoto, Matteo Ciantia, Ying Cui, Marco Previtali
{"title":"Systematic effect of particle roundness/angularity on macro- and microscopic behavior of granular materials","authors":"Usman Ali, Mamoru Kikumoto, Matteo Ciantia, Ying Cui, Marco Previtali","doi":"10.1007/s10035-023-01341-y","DOIUrl":"10.1007/s10035-023-01341-y","url":null,"abstract":"<div><p>Roundness/angularity is a vital shape descriptor that significantly impacts the mechanical response of granular materials and is closely associated with many geotechnical problems, such as liquefaction, slope stability, and bearing capacity. In this study, a series of biaxial shearing tests are conducted on dual-size aluminum circular and hexagonal rod material. A novel image analysis technique is used to estimate particle kinematics. A discrete element model (DEM) of the biaxial shearing test is then developed and validated by comparing it with the complete experimental data set. To systematically investigate the effect of roundness/angularity on granular behavior, the DEM model is then used to simulate eight non-elongated convex polygonal-shaped particles. Macroscopically, it is observed that angular assemblies exhibit higher shear strengths and volumetric deformations, i.e., dilations. Moreover, a unique relationship is observed between the critical state stress ratio and particle roundness. Microscopically, the roundness shows a considerable effect on rotational behavior such that the absolute mean cumulative rotation at the same strain level increases with roundness. A decrease in roundness results in relatively stronger interlocking, restricting an individual particle’s free rotation. Furthermore, the particles inside the shear band exhibit significantly higher rotations and are always associated with low coordination numbers. Generally, the geometrical shape of a particle is found to have a dominant effect on rotational behavior than coordination number.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 3","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-023-01341-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5090544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Granular MatterPub Date : 2023-06-28DOI: 10.1007/s10035-023-01350-x
Yu Wang, Jinbo Tang, Shuaixing Yan
{"title":"Fracture failure characteristics of porous polycrystalline ice based on the FDEM","authors":"Yu Wang, Jinbo Tang, Shuaixing Yan","doi":"10.1007/s10035-023-01350-x","DOIUrl":"10.1007/s10035-023-01350-x","url":null,"abstract":"<div><p>The finite-discrete element method (FDEM) can be used to simulate brittle materials such as polycrystalline ice with specific geometric information. However, most previous studies treat ice as intact and nonporous, ignoring the effect of internal porosity. In this study, an FDEM model of polycrystalline ice with specific porosity is built by using the cohesive interface element and the method of randomly deleting elements. Comparison with experimental results confirms that the model can capture the strength properties and deformation patterns of polycrystalline ice. The fracture failure patterns and mechanical responses of ice specimens and their relationships with porosity are investigated by uniaxial compression tests and Brazilian splitting tests. The results show that with increasing porosity, the fracture failure patterns of the specimens in the uniaxial compression test evolve into three types: global shear failure, local shear failure and local tensile‒shear failure. There is no obvious difference in the failure patterns of the specimens in the Brazilian splitting test. In addition, as the porosity increases, the material exhibits a transition from brittleness to ductility, and the porosity also affects the local fragmentation characteristics inside the polycrystalline ice, significantly weakening the strength of the specimens.</p><h3>Graphic Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 3","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5088125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Granular MatterPub Date : 2023-06-02DOI: 10.1007/s10035-023-01343-w
Xianrui Kong, Qing Cao, Zihan Zhao, Zhiyou Niu, Jing Liu
{"title":"Breakage probability of feed pellet under repeated compression and impacts","authors":"Xianrui Kong, Qing Cao, Zihan Zhao, Zhiyou Niu, Jing Liu","doi":"10.1007/s10035-023-01343-w","DOIUrl":"10.1007/s10035-023-01343-w","url":null,"abstract":"<div><p>It is a common phenomenon that feed pellet is broken by compression and impact during the processing of manufacturing and production. At present, the breakage characteristics of feed pellet under repeated loading are not clear. In order to predict the breakage probability of feed pellet accurately, the compound feed for piglets feeding was selected to conduct repeated compression and repeated impacts tests in this paper. Firstly, the quasi-static repeated compression tests were conducted, and it was found that the cyclic stiffening occurred due to the densification of feed pellet during the repeated compression. Secondly, the quasi-static repeated compression tests in radial and axial direction were performed under different loading forces. And the results showed that the compressive energy required for feed pellet breakage increased with the decrease of loading force. Then, two-parameter Weibull function was used to fit the relationship between mass-specific compressive energy and breakage probability. And the fitting results R<sup>2</sup> were all greater than 0.9 and the fitting effect was good. Finally, dynamic repeated impacts tests with different impact velocities were conducted. The results showed that the impact times required for feed pellet to reach the same breakage probability decreased, with the increase of impact velocity. Three-parameter Weibull function was used to fit the relationship between mass-specific impact energy and breakage probability. Good fitting effect was obtained and R<sup>2</sup> was greater than 0.95. The fitting results can predict the breakage probability of feed pellet in the process of repeated loading, and provide guidance for the feed pellet production and transportation.</p><h3>Graphical abstract</h3><p>The breakage characteristics of feed pellet under reteated loading</p>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 3","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4089743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Granular MatterPub Date : 2023-06-01DOI: 10.1007/s10035-023-01338-7
Neiladri S. Ray, Devang Khakhar
{"title":"A method for coarse graining fluctuation velocities in granular flows","authors":"Neiladri S. Ray, Devang Khakhar","doi":"10.1007/s10035-023-01338-7","DOIUrl":"10.1007/s10035-023-01338-7","url":null,"abstract":"<div><p>The granular temperature, which is the mean kinetic energy per unit mass of velocity fluctuations, is an important rheological parameter for granular flows. Artoni and Richard (Phys Rev E 91: 032202, 2015) showed that accurate calculation of the fluctuation velocity during coarse graining requires the subtraction of the mean velocity at the position of the particle since the variation of the mean velocity over the coarse graining domain may be of the same order as the fluctuation velocity. This requires a two-step calculation. In this study, a single-step method of calculating granular temperatures is proposed. The values obtained by this method for a simulated system of inclined surface flow of granular materials are compared with those obtained using earlier methods and are shown to be accurate.</p></div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 3","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-023-01338-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4037895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Granular MatterPub Date : 2023-05-13DOI: 10.1007/s10035-023-01334-x
Kaifeng Zeng, Huabei Liu
{"title":"Effect of particle size distributions on the mechanical behavior and particle breakage of coral sands","authors":"Kaifeng Zeng, Huabei Liu","doi":"10.1007/s10035-023-01334-x","DOIUrl":"10.1007/s10035-023-01334-x","url":null,"abstract":"<div><p>A series of tests was carried out to study the effect of particle size distribution on the mechanical behavior and particle breakage of coral sand. The tested materials had the same origin, and ten different particle-size distributions were used in the tests. Notably, oedometric and isotropic compression tests and monotonic drained and undrained triaxial tests were conducted. Additionally, a simple particle breakage model considering particle size distribution based on the input energy was proposed. The test results showed that the oedometric and isotropic compressibilities of coral sand decreased with increasing uniformity coefficient <i>C</i><sub><i>u</i></sub> but increased with increasing mean particle size <i>D</i><sub><i>50</i></sub> and curvature coefficient <i>C</i><sub><i>c</i></sub>. The effective internal friction angle <i>φ</i>, maximum dilation angle <i>ψ</i><sub><i>max</i></sub> and secant modulus <i>E</i><sub><i>50</i></sub> of coral sand all increased with increasing coefficient <span>(sqrt {C_{u} /C_{c} })</span> but decreased with increasing mean particle size <i>D</i><sub><i>50</i></sub>. The relative density, particle breakage, confining pressure and particle size distribution had negligible influences on the residual friction angle of coral sand. In addition, under the same input energy, the relative breakage <i>B</i><sub><i>r</i></sub> decreased with increasing uniformity coefficient <i>C</i><sub><i>u</i></sub>, increased with increasing mean particle size <i>D</i><sub><i>50</i></sub> and was basically independent of the curvature coefficient <i>C</i><sub><i>c</i></sub>. The proposed particle breakage model could effectively predict the particle breakage trends of coral sands from the same source but with different particle gradations at the stress level used in this study.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 3","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4548357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}