{"title":"Call for Papers for a Special Issue of IEEE Transactions on Materials for Electron Devices","authors":"","doi":"10.1109/JPHOTOV.2025.3556947","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3556947","url":null,"abstract":"","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 3","pages":"509-510"},"PeriodicalIF":2.5,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10973167","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Journal of Photovoltaics Information for Authors","authors":"","doi":"10.1109/JPHOTOV.2025.3555921","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3555921","url":null,"abstract":"","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 3","pages":"C3-C3"},"PeriodicalIF":2.5,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10973140","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Call for Nominations for Editor-in-Chief IEEE Transactions on Electron Devices","authors":"","doi":"10.1109/JPHOTOV.2025.3559276","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3559276","url":null,"abstract":"","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 3","pages":"514-514"},"PeriodicalIF":2.5,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10973176","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Call for Papers for a Special Issue of IEEE Transactions on Electron Devices","authors":"","doi":"10.1109/JPHOTOV.2025.3556949","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3556949","url":null,"abstract":"","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 3","pages":"511-512"},"PeriodicalIF":2.5,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10973201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Call for Nominations for Editor-in-Chief IEEE Electron Device Letters","authors":"","doi":"10.1109/JPHOTOV.2025.3559282","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3559282","url":null,"abstract":"","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 3","pages":"515-515"},"PeriodicalIF":2.5,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10973173","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Announcing an IEEE/Optica Publishing Group Journal of Lightwave Technology Special Issue","authors":"","doi":"10.1109/JPHOTOV.2025.3556951","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3556951","url":null,"abstract":"","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 3","pages":"513-513"},"PeriodicalIF":2.5,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10973180","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Guard Ring Designs on Photovoltaic Energy Harvesting Silicon LSIs","authors":"Takaya Sugiura;Yuta Watanabe","doi":"10.1109/JPHOTOV.2025.3554315","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3554315","url":null,"abstract":"This study explores strategies for safeguarding complementary metal–oxide–semiconductor (CMOS) field-effect-transistors (FETs) and PN-diode against bulk carrier contamination for energy harvesting applications. Energy harvesting processes can generate excessive carriers within the bulk region, which can penetrate the PMOS region from the p(P-Sub)/n(NWell) junction or <sc>nmosfet</small> without triple-well. To address this problem, this study investigated the effectiveness of a guard ring structure in protecting <sc>cmosfet</small>s and PN-diode by recombining carriers in their vicinities. The formation of unpassivated metals around <sc>cmosfet</small>s serves as a catalyst for carrier elimination before they penetrate the NWell region of a <sc>pmosfet</small> or the <sc>nmosfet</small> itself, thereby improving the <sc>off</small> states of both FETs. For a PN diode, the smaller off-current and lower threshold voltage obtained are advantageous for low-power consumption. However, such guard ring also degrades the performance of a photovoltaic (PV) cell by recombining the carriers needed by the cell to generate power. The experimental study of PV cells w/back-surface-field (BSF) and w/o BSF revealed that the former reduced the <inline-formula><tex-math>$V_{text{OC}}$</tex-math></inline-formula> of the cell with and that caution is required when forming a guard ring nearby the PV cell.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 3","pages":"420-426"},"PeriodicalIF":2.5,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevin S. Anderson;Clifford W. Hansen;Marios Theristis
{"title":"A Noniterative Method of Estimating Parameter Values for the PVsyst Version 6 Single-Diode Model From IEC 61853-1 Matrix Measurements","authors":"Kevin S. Anderson;Clifford W. Hansen;Marios Theristis","doi":"10.1109/JPHOTOV.2025.3554338","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3554338","url":null,"abstract":"Photovoltaic performance modeling accuracy depends heavily on the quality of the input parameters. When relying on generic PAN files and datasheets, the input parameters often fail to accurately capture the behavior of every module with the same model number. Therefore, there is a need for methods to generate more accurate input data. In this study, we present a method for determining parameter values for the PVsyst version 6 photovoltaic module performance model from performance test measurements following the IEC 61853-1:2011 standard. The method is intentionally noniterative to facilitate implementation and reproducibility. We apply the method to datasets from 15 modules of various photovoltaic technologies (SHJ, TOPCon, IBC, PERC, n-PERT, Al-BSF, and CdTe), reproducing the original maximum power measurements with root-mean-squared (RMS) accuracy within 0.5% in all cases. The method's accuracy is compared to that of two iterative methods.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 3","pages":"492-499"},"PeriodicalIF":2.5,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10955246","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amir Al-Ahmed;Mohammad Afzaal;Firoz Khan;Muhammed P. U. Haris
{"title":"Double-Perovskite Materials: Possibilities and Reality for a Better Solar Cell Device","authors":"Amir Al-Ahmed;Mohammad Afzaal;Firoz Khan;Muhammed P. U. Haris","doi":"10.1109/JPHOTOV.2025.3551499","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3551499","url":null,"abstract":"Despite the unprecedented certified efficiency of lead-based perovskite solar cells, their incorporation of potentially hazardous lead presents a considerable disadvantage, limiting their commercial feasibility. Halide double perovskites (DPVTs) have emerged as viable alternatives to lead-based perovskites. Nonetheless, obstacles such as inadequate solubility with traditional precursor solvents, an elevated indirect optical bandgap, and heterogeneous structural distributions have been recognized as impediments to their utilization in solar devices. Out of numerous compositions of DPVTs documented in the literature, only a limited number of structures have been effectively incorporated into solar cell systems. Furthermore, there is huge divergence between simulated and actual solar cell efficiencies. Comprehending the essential optoelectronic features and their underlying mechanisms is vital for formulating mitigating methods. This review examines possible DPVTs exhibiting favorable optoelectronic characteristics and photovoltaic metrics. We identify existing problems and innovative mitigation strategies regarding the robustness of DPVT structures, their optoelectronic properties, the simulation of photovoltaic performance, and the laboratory fabrication of DPVTs, while also providing insights into future prospects.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 3","pages":"380-392"},"PeriodicalIF":2.5,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}