AIChE JournalPub Date : 2024-11-30DOI: 10.1002/aic.18661
Venkat Venkatasubramanian
{"title":"Do large language models “understand” their knowledge?","authors":"Venkat Venkatasubramanian","doi":"10.1002/aic.18661","DOIUrl":"https://doi.org/10.1002/aic.18661","url":null,"abstract":"Large language models (LLMs) are often criticized for lacking true “understanding” and the ability to “reason” with their knowledge, being seen merely as autocomplete engines. I suggest that this assessment might be missing a nuanced insight. LLMs do develop a kind of empirical “understanding” that is “geometry”-like, which is adequate for many applications. However, this “geometric” understanding, built from incomplete and noisy data, makes them unreliable, difficult to generalize, and lacking in inference capabilities and explanations. To overcome these limitations, LLMs should be integrated with an “algebraic” representation of knowledge that includes symbolic AI elements used in expert systems. This integration aims to create large knowledge models (LKMs) grounded in first principles that can reason and explain, mimicking human expert capabilities. Furthermore, we need a conceptual breakthrough, such as the transformation from Newtonian mechanics to statistical mechanics, to create a new science of LLMs.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"18 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hydrodynamics and mass transfer performance of gas–liquid two-phase flow in a high-throughput chaotic microreactor","authors":"Jia-Ni Zhang, Hao-Tian Tong, Zu-Chun Shi, Ting-Liang Xie, Qiang Liu, Shi-Xiao Wei, Shuang-Feng Yin","doi":"10.1002/aic.18657","DOIUrl":"https://doi.org/10.1002/aic.18657","url":null,"abstract":"Microbubbles have been widely applied in various fields. Here, an oscillating feedback microreactor (OFM) was designed to produce microbubbles at high throughput (5–80 mL/min), where the hydrodynamics and mass transfer performance of gas–liquid two-phase system were investigated. The hydrodynamics results showed that three secondary flows (oscillation, vortex, and feedback) could be effectively generated for inducing chaotic flow in the OFM, and the gas phase could be effectively broken up into small microbubbles. The bubble size was more sensitive to the liquid phase flow rate than the gas phase. Two dimensionless prediction formulas for bubble Sauter size were proposed based on gas–liquid flow ratio and Reynolds number at different liquid flow rates. The mass transfer experiments showed that the volumetric average mass transfer coefficient <i>k</i><sub>L</sub><i>a</i> was 1–3 orders of magnitude higher than those of conventional reactors.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"12 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-11-30DOI: 10.1002/aic.18664
Suhan Liu, Gongli Wu, Yuqing Chen, Yaoyao Han, Mingchao Zhang, Jincan Kang, Min Tang, Krijn P. de Jong, Qinghong Zhang, Ye Wang, Kang Cheng
{"title":"Direct conversion of syngas into methyl acetate by relay catalysis: From fabrication of active sites to process control","authors":"Suhan Liu, Gongli Wu, Yuqing Chen, Yaoyao Han, Mingchao Zhang, Jincan Kang, Min Tang, Krijn P. de Jong, Qinghong Zhang, Ye Wang, Kang Cheng","doi":"10.1002/aic.18664","DOIUrl":"https://doi.org/10.1002/aic.18664","url":null,"abstract":"The direct and selective conversion of syngas into C<sub>2+</sub> oxygenates is challenging due to the complex reaction network. Here, we report a robust relay system for the direct synthesis of methyl acetate (MA) from syngas, which combines CuZnAlO<sub><i>x</i></sub>/H-ZSM-5 for syngas to dimethyl ether (DME) with modified H-MOR for DME carbonylation. The dehydration of methanol to DME on H-ZSM-5 significantly enhanced the hydrogenation of CO on CuZnAlO<sub><i>x</i></sub>, because of high DME equilibrium yields. Blocking of Brönsted acid sites with basic molecules or selective dealumination of 12-membered rings in H-MOR suppressed the zeolite coking. Besides, reaction temperatures above 240°C avoided H<sub>2</sub>O poisoning of carbonylation sites inside 8-MR side pockets of H-MOR, further benefiting the catalytic stability. Eventually, this relay system provided a high MA selectivity of 75% and an acetic acid selectivity of 13% at a CO conversion of 65%, outperforming reported catalysts.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"26 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discharge reactor for fabricating efficient supported metal catalysts at room temperature in the absence of H2","authors":"Peng Liu, Xin-Yu Meng, Xujun Wang, Yiyi Zhao, Yu-Long Men, Yun-Xiang Pan","doi":"10.1002/aic.18669","DOIUrl":"https://doi.org/10.1002/aic.18669","url":null,"abstract":"Supported metal catalysts have been widely applied and commonly fabricated through the H<sub>2</sub> reduction process. Herein, we develop a H<sub>2</sub>-free room-temperature discharge-driven reduction (RT-DR) reactor for fabricating supported metal catalysts at room temperature without H<sub>2</sub>. By RT-DR reactor, a catalyst with pseudo-boehmite (PB) as support (CdS/Pt/PB) is fabricated. In visible-light-driven photocatalytic H<sub>2</sub>O splitting to H<sub>2</sub>, CdS/Pt/PB shows a H<sub>2</sub> evolution rate of 1132 μmol h<sup>−1</sup>, which is greatly enhanced than that on catalyst prepared by traditional H<sub>2</sub>-reduction (633 μmol h<sup>−1</sup>). RT-DR reactor is also used to prepare a catalyst with low sodium PB (LSPB) as support (CdS/Pt/LSPB). In visible-light-driven photocatalytic H<sub>2</sub>O splitting to H<sub>2</sub>, CdS/Pt/LSPB shows a H<sub>2</sub> evolution rate of 2554 μmol h<sup>−1</sup>, which is 2.5 times higher than that on catalyst prepared by traditional H<sub>2</sub>-reduction (1029 μmol h<sup>−1</sup>). Thus, RT-DR reactor has high efficiency and universality in preparing catalysts, thus offering a great potential for commercialization.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"74 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-11-29DOI: 10.1002/aic.18670
Zhenbin Gu, Jinkun Tan, Haoli Zhou, Zhengkun Liu, Lin Ge, Guangru Zhang, Wanqin Jin
{"title":"High H2 permeability in F-doped BaZr0.7Ce0.2Y0.1O3−δ perovskite membranes via thermodynamic controlled sintering","authors":"Zhenbin Gu, Jinkun Tan, Haoli Zhou, Zhengkun Liu, Lin Ge, Guangru Zhang, Wanqin Jin","doi":"10.1002/aic.18670","DOIUrl":"https://doi.org/10.1002/aic.18670","url":null,"abstract":"A raw hydrogen mixture frequently results in a reduction in conversion efficiency and the generation of undesired by-products. The application of advanced membrane technology has the potential to offer an economically viable solution for the recovery of hydrogen from such mixtures. BaZr<sub>1−x−y</sub>Ce<sub>x</sub>Y<sub>y</sub>O<sub>3−δ</sub> is increasingly regarded as an optimal perovskite hydrogen permeable membrane. Nevertheless, the main drawback to its use in a larger scale is the extremely low hydrogen permeability and stability. An original perovskite material is proposed in this study, BaZr<sub>0.7</sub>Ce<sub>0.2</sub>Y<sub>0.1</sub>O<sub>3−δ</sub>-F<sub>x</sub>. A thermodynamic-controlled sintering strategy (TCS) has been employed to inhibit the evaporation of metals from ceramic solids. The TCS directly caused the hydrogen permeation flux to reach 1.07 ml·min<sup>−1</sup> cm<sup>−2</sup>, representing a fourfold improvement. Furthermore, F-doping demonstrated enhanced performance at low and medium temperatures. The aforementioned successful strategy provides an effective path for the tailoring of perovskite materials and promotes its application for the industrial-scale separation of hydrogen.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stabilization of cuσ+ via strong Cu-O-Si interface for efficient electrocatalytic acetylene semi-hydrogenation","authors":"Xiaoli Jiang, Wangxin Ge, Yu Fan, Xuedi Sheng, Hongliang Jiang, Chunzhong Li","doi":"10.1002/aic.18663","DOIUrl":"https://doi.org/10.1002/aic.18663","url":null,"abstract":"The development of a high-performance electrocatalytic acetylene semi-hydrogenation catalyst is the key to the selective removal of acetylene from industrial ethylene gas and non-oil route to ethylene production. However, it is still hampered by the deactivation of the catalyst and hydrogen evolution interference. Here, we proposed an interface engineering strategy involving the Cu and cupric oxide nanoparticles dispersed on amorphous SiO<sub>2</sub> (Cu/CuO<sub><i>x</i></sub>/SiO<sub>2</sub>) by a simple stöber method. x-ray photoelectron spectroscopy demonstrated the strong interfacial interaction between cupric oxide nanoparticles and SiO<sub>2</sub>. The formed Cu-O-Si interface stabilized the Cu<sup>σ+</sup> at high reduction potentials, thus improving the activity and stability of the acetylene reduction reaction, as confirmed by in situ Raman spectroscopy. Consequently, the electrochemical test results showed that at 0.5 M KHCO<sub>3</sub>, the maximum Faraday efficiency (FE) of ethylene on the optimized Cu/CuO<sub><i>x</i></sub>/SiO<sub>2</sub> reached 96%. And ethylene FE remains above 85% at −100 mA cm<sup>−2</sup> for 40 h.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"196 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142742796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A highly integrated ceramic membrane-based reactor for intensifying the biomass gasification to clean syngas","authors":"Wei Wei, Qiaoqiao Zhou, Ajing Ding, Shuncheng Li, Feng Zeng, Xuerui Wang, Chong Tian, Zhaoxiang Zhong, Huanhao Chen, Xuehong Gu","doi":"10.1002/aic.18647","DOIUrl":"https://doi.org/10.1002/aic.18647","url":null,"abstract":"Biomass gasification for syngas production is a key operating unit in the biomass utilization process. However, its overall efficiency and stability are often restricted by the presence of complex impurities, including particulate matters (PMs) and tars. In this study, a highly integrated ceramic membrane-based reactor was developed for high-temperature syngas cleaning, enabling the efficient <i>in situ</i> removal of PMs and tars from bio-vapors produced by biomass gasification. Specifically, a silicon carbide (SiC) membrane could separate PMs from biomass volatiles <i>in situ</i>, while a structured Ni<sub>15</sub>La<sub>5</sub>/S1-SiC catalyst (nickel and lanthanum-laden silicalite-1 zeolite supported on SiC foam) facilitated the catalytic reforming of tars. Compared to other control reactors (i.e., those containing either a membrane or catalyst alone), the integrated reactor showed synergistic intensification in producing clean syngas from biomass gasification, achieving PM and tar removal efficiencies of up to ~97% and ~90%, and exhibited excellent stability in five-cycle evaluations at 800°C.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"38 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142713043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boosting electrocatalytic alcohol oxidation: Efficient d–π interaction with modified TEMPO and bioinspired structure","authors":"Ying Chen, Shibin Wang, Zaixiang Xu, Yuhang Wang, Jiahui He, Kai Li, Jieyu Wang, Lihao Liu, Linhan Ren, Suiqin Li, Zhengbin Zhang, Xing Zhong, Jianguo Wang","doi":"10.1002/aic.18662","DOIUrl":"https://doi.org/10.1002/aic.18662","url":null,"abstract":"Aminoxyl radicals electrocatalysis presents a sustainable method for oxidizing alcohols into high-value products. Nonetheless, the requirement for high doses of aminoxyl radicals diminishes product purity and economic viability. This study synthesized methylimidazole-functionalized 4-acetylamino-2,2,6,6-tetramethylpiperidine-N-oxyl derivative (MIAcNH-TEMPO) with a strongly electron-withdrawing imidazole group and combined it with bioinspired nickel-supported carbonaceous octopus tentacles for effective electrooxidation of alcohols, achieving high current density of 200 mA cm<sup>−2</sup>, selectivity of 99%, and turnover frequency of 26,490 h<sup>−1</sup>. In situ experiments and theoretical calculations indicated that the synergistic effect of Ni-3d<sub><i>xz</i></sub> orbitals on the tentacle surface interacting with the π orbitals of MIAcNH-TEMPO creates a strong d–π interaction, which effectively facilitating the creation of a locally intermediate-enriched microenvironment, decreased the required quantity of aminoxyl radicals. Moreover, the high aqueous solubility of MIAcNH-TEMPO reduces the difficulty of separation process. Scale-up experiments conducted in a continuous flow electrolyzer showcased the potential of this strategy for practical applications.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"38 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142713044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-11-26DOI: 10.1002/aic.18642
Marco Avendano, Qiang Fu, Jianpei Lao, Sankar Nair, Matthew J. Realff
{"title":"Simultaneous optimization of simulated moving bed adsorption and distillation for 2,3-butanediol recovery","authors":"Marco Avendano, Qiang Fu, Jianpei Lao, Sankar Nair, Matthew J. Realff","doi":"10.1002/aic.18642","DOIUrl":"https://doi.org/10.1002/aic.18642","url":null,"abstract":"A combined simulated moving bed (SMB) and distillation separation scheme is developed to recover 2,3-butanediol (BDO) from a dilute fermentation broth. The scheme was integrated into a lignocellulosic biorefinery that produces hydrocarbon fuels from corn stover with BDO as an intermediate. BDO recovery is one of the most challenging processes in this biorefinery; and given the high associated energy duties, direct distillation is considered cost-prohibitive. An alternative separation is SMB adsorption in nanoporous materials, which can reject 90% of the water and reduce subsequent distillation costs. Rigorous models were used to optimize the SMB and distillation simultaneously. The separation can be added to the biorefinery while keeping the projected minimum fuel selling price (MFSP) below $0.66 USD (US dollars) per liter gasoline-equivalent ($2.50/GGE, gallon gasoline equivalent). Finally, sensitivity analyses were conducted to assess the effects of cost and lifetime of the adsorbent, titer concentration, and BDO purity.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"8 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142713042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-11-26DOI: 10.1002/aic.18666
Ying Tian, Changqing He, Xincheng Zhang, Lin He, Zhenghe Xu, Hong Sui, Xingang Li
{"title":"Doping Si/O to enhance interfacial occupancy of demulsifiers for low-carbon breaking of water-in-heavy oil emulsions","authors":"Ying Tian, Changqing He, Xincheng Zhang, Lin He, Zhenghe Xu, Hong Sui, Xingang Li","doi":"10.1002/aic.18666","DOIUrl":"https://doi.org/10.1002/aic.18666","url":null,"abstract":"Separating water-in-heavy oil (W/HO) emulsions at low (room) temperature is challenging when exploiting heavy oil. We propose an adaptable strategy for constructing Si/O-doped demulsifiers. A nonionic demulsifier (APBMP) has been synthesized based on polysiloxane modified by allyl polyether and butyl acrylate. APBMP achieves 95.97% dehydration within 5 min for W/HO emulsions at 288.15 K and complete dehydration in 15 min at 323.15 K. Mechanistic studies found that doping Si/O into the demulsifier molecules increases the number of hydrogen bond sites, which enables the demulsifiers to quickly disperse natural stabilizers (e.g., asphaltenes) and replace them at the oil–water interfacial film. The demulsifiers prefer to occupy the interfacial sites rather than dissolve into the bulk oil or water phases. Driven by hydrogen-bond-dominated noncovalent interactions, the oil–water interfacial film is softened, reconstructed, and broken. These findings provide insights into developing novel materials for oil–water separations in a low-carbon way.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"12 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142742801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}