AIChE JournalPub Date : 2024-10-17DOI: 10.1002/aic.18632
Xiaorui Zhu, Lingyu Zhu, Jianli Wang, Jiayuan Wang
{"title":"Development of thermomorphic ionic liquids derived from organophosphorus acids for homogeneous extraction processes","authors":"Xiaorui Zhu, Lingyu Zhu, Jianli Wang, Jiayuan Wang","doi":"10.1002/aic.18632","DOIUrl":"https://doi.org/10.1002/aic.18632","url":null,"abstract":"The objective of this study is to develop ionic liquids (ILs) derived from organophosphorus acids, featuring thermomorphic phase behavior tailored for homogeneous liquid–liquid extraction applications, addressing the challenges posed by the high viscosity of ILs. The novelty of our work includes a logP-based guideline for designing thermomorphic water/organophosphorus IL solvent systems and a proof-of-concept study on homogeneous liquid–liquid extraction applications. Specifically, we reported a series of novel ILs exhibiting lower critical solution temperature behavior in aqueous solutions by exploring various combinations of tetraalkylammonium cations with organophosphorus acid-based anions. Practical applications utilizing this type of thermomorphic solvent system for extracting metal ions and acids were demonstrated. The benefits of homogeneous extraction, as well as the limitations stemming from the salting-out effect, were presented and discussed.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"19 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-10-17DOI: 10.1002/aic.18622
Seunggeon Lee, Dongjae Kim, Jaewook Nam
{"title":"Pore classification method with steady-state diffusion in complex porous media","authors":"Seunggeon Lee, Dongjae Kim, Jaewook Nam","doi":"10.1002/aic.18622","DOIUrl":"https://doi.org/10.1002/aic.18622","url":null,"abstract":"In porous media, the transport and flow through the void phase are influenced by the internal pore network due to its complex morphology. In other words, the contributions of individual pores can vary due to their connectivity within the network and characteristics in physical phenomena. In this study, we propose a pore classification method according to geometries and physical behaviors to understand the role of each pore in microstructure. Our method classifies entire pores into backbone, dead-end, and isolated pore using connectivity analysis and steady-state diffusion. The backbone acts as the main pathway for the transportation process. Therefore, backbone fraction can be utilized as a quantitative indicator of the pore network in microstructure. Furthermore, this approach enables us to explore the relationship between classified pores and microstructural properties through numerical experiment using virtual structures. This method can be used for various porous materials, such as battery electrodes, membranes, and soil.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"31 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bimetal anchoring porous MXene nanosheets for driving tandem catalytic high‐efficiency electrochemical nitrate reduction","authors":"Rongyu Guo, Zhijie Cui, Tianyang Yu, Jing Li, Wenchao Peng, Jiapeng Liu","doi":"10.1002/aic.18628","DOIUrl":"https://doi.org/10.1002/aic.18628","url":null,"abstract":"Electrochemical nitrate reduction reaction (NO<jats:sub>3</jats:sub>RR) is considered a promising strategy for ammonia synthesis and nitrate removal, in which catalyst development is crucial. Herein, a series of bimetal (Co and Cu) anchoring porous MXene nanosheets (Co<jats:sub>x</jats:sub>Cu<jats:sub>y</jats:sub>@PM) catalysts were prepared by combining etching and reduction strategy. On the one hand, Cu and Co bimetals provided tandem catalytic active sites for NO<jats:sub>3</jats:sub>RR. On the other hand, the in‐plane PM exhibited good electrical conductivity and multiple transport pathways. Consequently, the optimized Co<jats:sub>7</jats:sub>Cu<jats:sub>3</jats:sub>@PM catalyst achieved a high ammonia yield of 7.43 mg h<jats:sup>−1</jats:sup> mg cat.<jats:sup>−1</jats:sup> and an excellent Faraday efficiency (FE) of 95.9%. The mechanism of NO<jats:sub>3</jats:sub>RR was investigated by analyzing electrolysis products and in situ Fourier transform infrared spectroscopy. Furthermore, the Co<jats:sub>7</jats:sub>Cu<jats:sub>3</jats:sub>@PM based ZnNO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> battery exhibited the superior power density of 5.59 mW cm<jats:sup>−2</jats:sup> and an NH<jats:sub>3</jats:sub> FE of 92.3%. This work presents an effective strategy to design MXene‐based high‐performance NO<jats:sub>3</jats:sub>RR electrocatalysts.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"73 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-10-15DOI: 10.1002/aic.18624
Kaiyuan Yang, Chengbo Liu, Kun Hong, Xizhong Chen, Zheng-Hong Luo
{"title":"An elastoplastic beam bond model for DEM simulation of deformable materials and breakage behaviors","authors":"Kaiyuan Yang, Chengbo Liu, Kun Hong, Xizhong Chen, Zheng-Hong Luo","doi":"10.1002/aic.18624","DOIUrl":"https://doi.org/10.1002/aic.18624","url":null,"abstract":"In modern chemical engineering production, numerous elastoplastic materials, often formed into agglomerates, frequently undergo plastic deformation and rupture. Understanding how these materials behave under different conditions is crucial for improving manufacturing processes and material design. In this work, an elastoplastic beam bond model for discrete element method (DEM) simulation was developed, in which a yield criterion is introduced into Timoshenko beam bond method. The model can simulate not just the initial elastic (stretchy) behavior of the materials but also their plastic (permanent) deformation behaviors. The model was applied to central collision of two agglomerates, agglomerate uniaxial compression, and agglomerate-wall impact cases. It is shown that the updated model could predict the behavior of materials that undergo permanent changes under stress, compared to previous models that only considered elastic behaviors. This could enable more accurate simulations of particulate materials and aid in better process design.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"3 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of highly active MgO by carbonate hydrogenation and its application in separation of cobalt and nickel","authors":"Jingbo Wang, Dongmei Han, Zhihua Wang, Fubo Gu, Mingfei Shao","doi":"10.1002/aic.18625","DOIUrl":"https://doi.org/10.1002/aic.18625","url":null,"abstract":"As a significant industrial material, MgO is mainly obtained by the pyrolysis of magnesite (magnesium carbonate) under air conditions, producing large amounts of CO<sub>2</sub> and contributing to global warming. In this work, the MgO was prepared using the hydrogenation reduction method. The reaction conditions led to CO<sub>2</sub> emissions of <1% and an overall temperature decrease of ~80°C. The highly active MgO prepared by hydrogenation reduction led to a precipitation rate of Co and Ni >99% with a short separation time. Electron paramagnetic resonance, CO<sub>2</sub> temperature programmed desorption, and diffuse reflectance infrared spectroscopy analyses showed that the MgO prepared by hydrogenation contained oxygen vacancies, which improved the alkalinity of the MgO and promoted the precipitation of Ni<sup>2+</sup> and Co<sup>2+</sup> by adsorption of hydroxyl oxygen to induce water dissociation, thereby enhancing their separation efficiency.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"563 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-10-09DOI: 10.1002/aic.18602
Gianmarco Barberi, Antonio Benedetti, Paloma Diaz-Fernandez, Daniel C. Sévin, Johanna Vappiani, Gary Finka, Fabrizio Bezzo, Pierantonio Facco
{"title":"Productive CHO cell lines selection in biopharm process development through machine learning on metabolomic dynamics","authors":"Gianmarco Barberi, Antonio Benedetti, Paloma Diaz-Fernandez, Daniel C. Sévin, Johanna Vappiani, Gary Finka, Fabrizio Bezzo, Pierantonio Facco","doi":"10.1002/aic.18602","DOIUrl":"https://doi.org/10.1002/aic.18602","url":null,"abstract":"The identification of highly productive cell lines is crucial in the development of bioprocesses for the production of therapeutic monoclonal antibodies (mAbs). Metabolomics data provide valuable information for cell line selection and allow the study of the relationship with mAb productivity and product quality attributes. We propose a novel robust machine learning procedure which, exploiting dynamic metabolomic data from the Ambr®15 scale, supports the selection of highly productive cell lines during biopharmaceutical bioprocess development and scale-up. The metabolomic profiles dynamics allows to identify the cell lines with high productivity, already in the early stages of experimentation, and the biomarkers that are the most related to mAb productivity, finding at the same time the key metabolic pathways for discriminating mAb productivity. Specifically, tricarboxylic acid cycle pathways are predominant in the early stages of the cultivation, while amino and nucleotide sugar pathways influence in the late stages of the culture.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"61 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-10-04DOI: 10.1002/aic.18619
Georgios A. Kelesidis, Amogh Nagarkar, Pier Giuseppe Rivano
{"title":"Solar steam generation enabled by carbon black: The impact of particle size and nanostructure","authors":"Georgios A. Kelesidis, Amogh Nagarkar, Pier Giuseppe Rivano","doi":"10.1002/aic.18619","DOIUrl":"10.1002/aic.18619","url":null,"abstract":"<p>Here, commercial carbon black (CB) grades are characterized in detail to determine the link between their physicochemical properties and solar steam generation performance. The CB nanoparticles used here have surface mean primary particle diameters of 11–406 nm resulting in specific surface areas of 8–300 m<sup>2</sup>/g. Thermogravimetric analysis, dynamic light scattering, Raman spectroscopy, and x-ray diffraction reveal that fine CB nanoparticles form large agglomerates, have a more disordered nanostructure and larger organic carbon content than coarse CB grades. Most importantly, UV–vis spectroscopy and Mie theory show that increasing the particle size from 14 to 406 nm reduces the light absorption of CB dispersed in water up to 86%. So, the water evaporation flux of suspensions containing 11–14 nm CB nanoparticles is up to 25% larger than that obtained for suspensions of 406 nm particles. Thus, good control of particle size is essential to optimize the solar steam generation enabled by CB.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"70 12","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aic.18619","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-10-02DOI: 10.1002/aic.18620
Sogol Asaei, Geeta Verma, Nicholas S. Sinclair, Julie N. Renner
{"title":"Electrochemical biosensing of cerium with a tyrosine-functionalized EF-hand loop peptide","authors":"Sogol Asaei, Geeta Verma, Nicholas S. Sinclair, Julie N. Renner","doi":"10.1002/aic.18620","DOIUrl":"10.1002/aic.18620","url":null,"abstract":"<p>The significance of easily detecting rare earth elements (REEs) has increased due to the growing demand for REEs. Addressing this need, we present an innovative electrochemical biosensor, focusing on cerium as a model REE. This biosensor utilizes a modified EF-hand loop peptide sequence, incorporating cysteine for covalent attachment to a gold working electrode and tyrosine as an electrochemically active amino acid. The sensor was designed such that binding to cerium induces a conformational change in the peptide, affecting tyrosine's proximity to the electrode surface, modulating the current. A calibration curve was generated from cyclic voltammetry current peaks at ~0.55–0.65 V versus a silver pseudo-reference electrode, with cerium concentrations ranging from 0 to 67 μM in artificial urine. The sensor exhibited a biologically relevant limit of detection of 35 μM and a sensitivity of −0.0024 ± 0.002 (μA μM)<sup>−1</sup>. These findings offer insights into designing peptide sequences for electrochemical biosensing.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"70 12","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aic.18620","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-10-01DOI: 10.1002/aic.18615
Dingwang Huang, Xiaoxia Duan, Xin Feng, Guilong Wang, Weipeng Zhang, Jie Chen, Zai-Sha Mao, Chao Yang
{"title":"A novel highly sensitive test reaction for micromixing: Acid-base neutralization and alkaline hydrolysis of ethyl oxalate","authors":"Dingwang Huang, Xiaoxia Duan, Xin Feng, Guilong Wang, Weipeng Zhang, Jie Chen, Zai-Sha Mao, Chao Yang","doi":"10.1002/aic.18615","DOIUrl":"https://doi.org/10.1002/aic.18615","url":null,"abstract":"Micromixing in chemical reactors can be characterized through test reactions that are sensitive to mixing. A new pair of parallel competitive reactions, including acid–base neutralization and diethyl oxalate hydrolysis, is proposed in this work. It has clear principles and high sensitivity to micromixing with quantitative accuracy and operational simplicity. The measurement results obtained from stopped-flow spectra show that the alkaline hydrolysis of diethyl oxalate follows second-order kinetics, and the rate constant conforms to the Arrhenius equation <i>k</i><sub>2</sub> = 2.331 × 10<sup>8</sup> exp(−26.92 × 10<sup>3</sup>/<i>RT</i>) (L/mol/s). The estimated half-life of hydrolysis is approximately 3 × 10<sup>−4</sup> s under the selected concentration combinations, which provides significant advantages for the micromixing assessment in the strong turbulent fluid environment. In the same stirred tank, the critical feed time of new test reaction is shorter than that of the Villermaux–Dushman reaction. Overall, this work provides practical ideas for screening other desired esters for fast hydrolysis to construct more test reactions for micromixing.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"44 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}