{"title":"Bipolar membrane electrodialysis with isolation chamber enables high-purity LiOH production with ordinary membranes","authors":"Duyi He, Weicheng Fu, Zihao Wang, Junying Yan, Huangying Wang, Ruirui Li, Baoying Wang, Xiaochun Chen, Yaoming Wang, Tongwen Xu","doi":"10.1002/aic.18674","DOIUrl":"https://doi.org/10.1002/aic.18674","url":null,"abstract":"Currently, bipolar membrane electrodialysis (BMED) is recognized as an eco-friendly technique to recycle lithium from waste lithium-ion batteries. However, the application of ordinary bipolar membranes has the disadvantage of unsatisfactory product purity due to undesired ion leakage. Herein, we proposed isolation chamber bipolar membrane electrodialysis (ICBMED) to inhibit coion migration, thereby increasing the purity of the regenerated acid and alkali. The experimental results indicate that 97.7%–99.3% of the LiOH generated by the ICBMED using domestic membranes was generated, which is much greater than the 85.7%–94.4% obtained without an isolation chamber. The total cost of the ICBMED for LiOH production with inexpensive domestic membranes was 1.65$/kg-LiOH (US) at 400 A/m<sup>2</sup>, which is lower than the cost of 1.91$/kg-LiOH (US) for flagship membranes with identical product quality. BMED with an isolation chamber provides a viable solution for acid–base production by balancing product quality and cost.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"202 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Channel–molecule attraction mediated molecule transport in confined nanochannels of COF membranes for nanofiltration","authors":"Ruilong Li, Yongjian Yang, Jingjing Chen, Chongchong Chen, Wenpeng Li, Xiaoli Wu, Jingtao Wang","doi":"10.1002/aic.18719","DOIUrl":"https://doi.org/10.1002/aic.18719","url":null,"abstract":"Porous membranes, a type of material widely used in nanofiltration, are confronted with the limitation that the influence of channel–molecule interactions on transport behaviors has yet been investigated in detail. Herein, covalent organic framework membranes with adjustable pore sizes (⁓ 2.5 nm and ⁓ 1.2 nm) and chemical groups (−F, −OH, and −CO−) were prepared by interfacial polymerization. We demonstrate that strong channel–molecule attraction induces the formation of stable solvent layers along nanochannel walls, which protect central molecules from the attraction of chemical groups. Significantly, stable solvent layers permit fast transport of ethanol (245.6 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>) with reactive black (RB) rejection of 96%. Likely, for membranes with weak channel–molecule attraction, no solvent layers are formed and molecules also transport smoothly. Interestingly, membranes that exhibit moderate channel–molecule attraction exert metastable solvent layers, thus displaying high transport resistance. This hindrance effect on molecule transport becomes more pronounced in smaller nanochannels.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"65 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-12-24DOI: 10.1002/aic.18714
Yan Zhang, Hai Liu, Ruoyu Hu, Yan Zhou, Shuai Wang, Jianguang Qi, Yinglong Wang, Zhaoyou Zhu, Guoxuan Li
{"title":"Extraction of valuable metals from waste Li-ion batteries by deep eutectic solvent: Experimental and mechanism analysis","authors":"Yan Zhang, Hai Liu, Ruoyu Hu, Yan Zhou, Shuai Wang, Jianguang Qi, Yinglong Wang, Zhaoyou Zhu, Guoxuan Li","doi":"10.1002/aic.18714","DOIUrl":"https://doi.org/10.1002/aic.18714","url":null,"abstract":"A novel phospho-based hydrophobic deep eutectic solvents (HDESs) is proposed to selectively extract valuable metals from waste lithium-ion batteries (LIBs). Under the optimized extraction conditions, the single-stage extraction efficiency of HDES [TOP][Lid] for Co<sup>2+</sup> and Ni<sup>2+</sup> were 98.5% and 83.9%, and HDES [TBP][Lid] for Co<sup>2+</sup> and Ni<sup>2+</sup> were 96.0% and 82.9%, and Li<sup>+</sup> was enriched in the extract. FT-IR, <sup>1</sup>H NMR, and ESP analysis confirmed the hydrogen bond between HBD and HBA. The metal ion extraction mechanism by HDESs was analyzed based on quantum chemistry (QC) and molecular dynamics (MD). The extraction mechanism at the molecular level is that electrostatic and coordination interactions between transition metal ions and HDESs dominate the extraction of metal ions (Co<sup>2+</sup> and Ni<sup>2+</sup>). The interaction intensity with HDESs was stronger than that between Li<sup>+</sup> and HDESs.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"25 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carbon-zero co-production of hydrogen and chemicals boosted by directional hydrogen spillover via terminated interface","authors":"Xuanlin Guo, Huifang Wu, Yang Zhao, Lirong Zheng, Qian Wang, Dianqing Li, Junting Feng","doi":"10.1002/aic.18713","DOIUrl":"https://doi.org/10.1002/aic.18713","url":null,"abstract":"Acceptorless dehydrogenation of biomass-alcohol provides an appealing route for co-producing green H<sub>2</sub> and high-value chemicals. However, the sluggish H species binding step severely inhibits reaction equilibrium and cause C-C cleavage. Herein, we propose a unique directional H spillover strategy driven by controlling electron transport direction via constructing Au-O-Cu-O-Mg/Al interfacial structure, to allow H species transfer from O-H dehydrogenation Cu<sup>2+</sup> site to C-H dehydrogenation Au site to promote H<sub>2</sub> formation. The structure that each Cu precisely terminated by Mg/Al is inherited from layered double hydroxides with orderly dispersed atom arrangement. Comprehensive studies substantiate that the unreducible Mg<sup>2+</sup>/Al<sup>3+</sup> blocks electron transfer toward support, whereas Au-O-Cu electronic interaction drives H spillover from the support to Au. The Au/CuMgAl catalyst demonstrated unprecedentedly high glycerol dehydrogenation activity, showing 3–10 times turnover frequency (1.18 × 10<sup>4</sup> h<sup>−1</sup>) than other biomass-derived H<sub>2</sub> formation system, co-producing lactic acid with selectivity up to 98.8%.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"2 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-12-23DOI: 10.1002/aic.18712
Yiming Xu, Fujun Li, Yun Zou, Jinzhe Cao, Shengyang Tao
{"title":"High‐speed continuous flow calorimetry in a nonadiabatic environment","authors":"Yiming Xu, Fujun Li, Yun Zou, Jinzhe Cao, Shengyang Tao","doi":"10.1002/aic.18712","DOIUrl":"https://doi.org/10.1002/aic.18712","url":null,"abstract":"Many rapid and strongly exothermic reactions have transitioned to continuous flow reactors for safety considerations. However, data from batch calorimeters often fall short in guiding these processes due to substantial differences in transfer characteristics, and the adiabatic components of calorimeters significantly escalate equipment costs and dimensions. Inspired by the human body's thermoregulatory mechanism, we developed the Dynamic Tracking Reference Continuous Calorimeter (DTRCC). This novel device enables rapid and precise calorimetry in continuous‐flow reactions under nonadiabatic conditions and variable external temperatures. The measurement time can be reduced to 110 s with a low difference of 0.5%. The DTRCC proves versatile across various reaction types, including nitrification and photoreaction. It can also determine solutions' heat capacity and reactions' selectivity according to calorimetry. Implementing the DTRCC provides crucial data that enhance the design and optimization of continuous flow reactors, significantly boosting chemical process safety and efficiency.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"24 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-12-23DOI: 10.1002/aic.18717
Xiongtao Ji, Na Wang, Jingkang Wang, Yunhai Huang, Ting Wang, Xin Huang, Hongxun Hao
{"title":"Tuning the morphology of supramolecular aggregates for nanocarrier‐based drug delivery","authors":"Xiongtao Ji, Na Wang, Jingkang Wang, Yunhai Huang, Ting Wang, Xin Huang, Hongxun Hao","doi":"10.1002/aic.18717","DOIUrl":"https://doi.org/10.1002/aic.18717","url":null,"abstract":"Due to the unique drug delivery mode and specific therapy, nano‐formulations are of interest for biomedical applications and treating many diseases. However, traditional method of nano‐formulation construction via additional carriers or structural modifications of therapeutic drugs might be cumbersome or low loading‐efficient. Herein, the kinetics, accessible pathways, and final outcomes of supramolecular assembly processes of therapeutic drugs are investigated in detail. It was found that the supramolecular aggregates of cephradine (CEP) undergoes a morphological transformation from anisotropic nanofiber (EtOH) to isotropic spherical nanoparticle (H<jats:sub>2</jats:sub>O), similar to “plants took root, sprouted, blossomed and bore fruit.” Moreover, the assembly kinetics results reveal the assembly pathways of nucleation elongation in H<jats:sub>2</jats:sub>O and surface‐catalyzed secondary nucleation in EtOH. The method presented in this work has the potential to be used for efficiently designing specific nano‐formulations.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"20 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-12-23DOI: 10.1002/aic.18700
Hasan Zerze, Ayush Gupta, Atanu Baksi, Dipayan Chakraborty, Peter G. Vekilov, Jeffrey D. Rimer, Gül H. Zerze
{"title":"A coarse-graining approach to model molecular liquids for mesoscale problems","authors":"Hasan Zerze, Ayush Gupta, Atanu Baksi, Dipayan Chakraborty, Peter G. Vekilov, Jeffrey D. Rimer, Gül H. Zerze","doi":"10.1002/aic.18700","DOIUrl":"10.1002/aic.18700","url":null,"abstract":"<p>Effective modeling of molecular interactions is fundamental for understanding and simulating large-scale chemical and biochemical systems. Here, we introduce a novel coarse-graining strategy that employs the Lennard–Jones (LJ) potential to model solvent–solvent and solute–solvent interactions that control mesoscale behaviors. Our approach maintains the accuracy in capturing essential thermophysical properties such as densities and vapor pressures, while simplifying the representation of solvent molecules. By aggregating multiple solvent molecules into a single bead, our model offers a robust tool for studying solvation properties in systems where the collective behavior of solvents plays a crucial role. This approach enables effective computational studies across various mesoscale phenomena, including phase transitions in polymer blends, concentrated solutions of small organic molecules, and biological self-assembly. We demonstrate the robustness of our approach by simulating a saturated cholesterol–ethanol solution, exemplifying its power to tackle large-scale systems with precision and efficiency.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"71 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chaotic advection and mass transfer of viscous liquid–liquid flows in a novel 3D serpentine microchannel","authors":"Jiecai Long, Congkai Xie, Haojun Zhang, Xuan Zhang, Jingsong Yao, Rongguang Zhang, Xun Chen, Xin Chen","doi":"10.1002/aic.18701","DOIUrl":"https://doi.org/10.1002/aic.18701","url":null,"abstract":"This article aimed to study the characteristics of chaotic advection and mass transfer of viscous liquid–liquid flows in a novel 3D serpentine microchannel (TSM) with hybrid structures. The TSM and its corresponding experimental setup are established, and the CFD model is verified through flow field visualization experiments. Results reveal that efficient chaotic convection in TSM is achieved through continuous irregular spatial fluid deformation. The Lyapunov exponents greater than zero indicate the existence of chaotic behavior, and the maximum lineal stretch rate <i>λ</i><sub>M</sub> increases linearly with the characteristic Reynolds number. The mass transfer characteristics are evaluated by diffusion mass transfer number Φ and mass transfer field synergy number <i>Fc</i> quantitatively. The mixing index MI shows an increasing trend as <i>Fc</i> increases, while the mixing effectiveness ME decreases as the outlet Reynolds number Re<sub>O</sub> decreases. The relationships of MI with <i>λ</i><sub>M</sub> and <i>Fc</i> and the relationship of ME with Re<sub>O</sub> are established.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"261 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-12-20DOI: 10.1002/aic.18709
Jinxin Zhang, Heng Zhang, Dongfang Wu
{"title":"Effect of solvents on furfural liquid-phase hydrogenation and catalysts: A review","authors":"Jinxin Zhang, Heng Zhang, Dongfang Wu","doi":"10.1002/aic.18709","DOIUrl":"https://doi.org/10.1002/aic.18709","url":null,"abstract":"Furfural (FFR) is one of the most important biomass derivatives, usually obtained by initial hydrolysis of xylose oligomers derived from hemicellulose to xylose and then acid catalyzed dehydration. The FFR liquid-phase hydrogenation reaction conditions are mild, which is conducive to connecting with upstream chemicals. The solvent systems play a crucial role in the selectivity of target products and the sustainability of the reaction process in the catalytic hydrogenation of FFR to high value-added chemicals. This work reviews various solvent systems (organic solvents, aqueous phase, supercritical CO<sub>2</sub>, and ionic liquids) used in the FFR hydrogenation. The functions, characteristics, and limitations of various solvents in FFR hydrogenation are discussed, and the interactions among solvents and FFR, reaction intermediates, and catalysts are summarized. This review can promote the development of FFR liquid-phase catalytic hydrogenation systems and provide valuable references for improving the yield and sustainability of FFR hydrogenation to high value-added chemicals.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"20 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Encapsulation of Pt species into MFI zeolite with tunable acid sites boosts reductive amination towards tertiary amines","authors":"Zhuo Xiong, Biao Meng, Cailing Chen, Xiaoling Liu, Chao Wu, Yue Wu, Meng Xu, Hongzhong Xu, Yihu Dai, Yu Han, Yu Zhou, Shibo Xi, Jun Wang","doi":"10.1002/aic.18710","DOIUrl":"https://doi.org/10.1002/aic.18710","url":null,"abstract":"Noble metal-catalyzed reductive amination of carbonyl compounds using molecular hydrogen is a promising green route for amine synthesis, but a challenge remains to boost the atomic efficiency of noble metal species. Herein, MFI zeolite encapsulated Pt species with tunable Si/Al ratios were synthesized to allow the formation of Pt nanoparticles (NPs) with almost the same loading amount, particle size, and electronic state. Confining Pt NPs allows the spatial satisfaction for the synergy of metal centers and acid sites, and Pt@ZSM-5(100) with a moderate Si/Al ratio performed high efficiency in the conversion of carbonyl compounds and boosted high TOF of 23,409 h<sup>−1</sup> in reductive amination of benzaldehyde. Combined with structure refinement, x-ray absorption fine structure (XAFS), in situ Fourier transforms infrared (FTIR) spectroscopy, and theoretical calculation, the study indicated that modulating the Si/Al ratio enables the fine rationalization of the microenvironment. The moderate Si/Al ratio causes suitable acid intensity that significantly contributes to the carbonyl compound activation and product desorption.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"114 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}