Liang Yuan, Bao-jiang Liu, Xiao-feng Li, Hai-feng Cong, Xin-gang Li
{"title":"A novel continuous microsphere separation process based on surrounding staggered flow","authors":"Liang Yuan, Bao-jiang Liu, Xiao-feng Li, Hai-feng Cong, Xin-gang Li","doi":"10.1002/aic.18852","DOIUrl":null,"url":null,"abstract":"Microspheres are widely used in multiple fields, and their particle size and distribution are crucial for their application. At present, narrow particle size distribution microspheres suffer from complex separation processes, low screening efficiency, and lack of process flexibility. To address this issue, a novel surrounded staggered flow separation process for continuous separation of microspheres with different particle sizes has been proposed. First, surrounding staggered flow was constructed using a microscale helix for sieving microspheres, and the flow mechanism was analyzed. Then, the flow control parameters were adjusted to optimize the sieving process. In addition, the separation efficiency was increased from 59.2% to 88% by continuous separation of microspheres using a single helix. At the same time, microspheres with a smaller size span can be successfully obtained. This adjustable helix for continuous screening of microspheres is both simple and efficient, and is a very promising method and equipment for screening microspheres.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"65 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18852","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microspheres are widely used in multiple fields, and their particle size and distribution are crucial for their application. At present, narrow particle size distribution microspheres suffer from complex separation processes, low screening efficiency, and lack of process flexibility. To address this issue, a novel surrounded staggered flow separation process for continuous separation of microspheres with different particle sizes has been proposed. First, surrounding staggered flow was constructed using a microscale helix for sieving microspheres, and the flow mechanism was analyzed. Then, the flow control parameters were adjusted to optimize the sieving process. In addition, the separation efficiency was increased from 59.2% to 88% by continuous separation of microspheres using a single helix. At the same time, microspheres with a smaller size span can be successfully obtained. This adjustable helix for continuous screening of microspheres is both simple and efficient, and is a very promising method and equipment for screening microspheres.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.