Chengmin Gui, Minghao Song, Qinghua Liu, Dong Xiang, Ping Lu, Sophie Fourmentin, Chao Hua, Zhigang Lei
{"title":"Rational screening of deep eutectic solvents for the removal of halogenated volatile organic compounds","authors":"Chengmin Gui, Minghao Song, Qinghua Liu, Dong Xiang, Ping Lu, Sophie Fourmentin, Chao Hua, Zhigang Lei","doi":"10.1002/aic.18858","DOIUrl":null,"url":null,"abstract":"A novel screening method integrating theoretical calculations with experimental validation was proposed to select deep eutectic solvents (DESs) for the highly efficient removal of halogenated volatile organic compounds (HVOCs) from exhaust gas. 1,2-Dichloroethane and dibromomethane were used to evaluate the reliability of this screening method. Following a meticulous screening process, tetraethylammonium chloride (TEAC) and levulinic acid (Lev) were identified as the hydrogen bond acceptor and donor, respectively, for the preparation of the DES TEAC–Lev (1:2). The TEAC–Lev (1:2) exhibited favorable viscosity and thermal stability, ensuring its outstanding recyclability over multiple absorption–desorption cycles. The absorption ratios of 1,2-dichloroethane and dibromomethane using the prepared DESs were both greater than 98.5%. The microscopic absorption mechanism indicates that the excellent absorption performance of TEAC–Lev (1:2) is mainly attributed to hydrogen bond interactions between the chlorine atoms and HVOCs, as well as between Lev and HVOCs.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"24 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18858","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel screening method integrating theoretical calculations with experimental validation was proposed to select deep eutectic solvents (DESs) for the highly efficient removal of halogenated volatile organic compounds (HVOCs) from exhaust gas. 1,2-Dichloroethane and dibromomethane were used to evaluate the reliability of this screening method. Following a meticulous screening process, tetraethylammonium chloride (TEAC) and levulinic acid (Lev) were identified as the hydrogen bond acceptor and donor, respectively, for the preparation of the DES TEAC–Lev (1:2). The TEAC–Lev (1:2) exhibited favorable viscosity and thermal stability, ensuring its outstanding recyclability over multiple absorption–desorption cycles. The absorption ratios of 1,2-dichloroethane and dibromomethane using the prepared DESs were both greater than 98.5%. The microscopic absorption mechanism indicates that the excellent absorption performance of TEAC–Lev (1:2) is mainly attributed to hydrogen bond interactions between the chlorine atoms and HVOCs, as well as between Lev and HVOCs.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.