Chengtian Cui, Jos van Reisen, Ioannis Tyraskis, Anton A. Kiss
{"title":"Efficient heat integration within discretely heat integrated distillation columns using liquid injection","authors":"Chengtian Cui, Jos van Reisen, Ioannis Tyraskis, Anton A. Kiss","doi":"10.1002/aic.18861","DOIUrl":null,"url":null,"abstract":"Electrification of distillation processes through discretely heat integrated distillation columns (D-HIDiC) is an effective approach to enhance energy efficiency and lower carbon emissions. For separating systems with high temperature lift, multi-stage compression and inter-stage cooling are necessary to link the high-pressure rectifier and low-pressure stripper. Traditionally, heat recovery employs pumparound loops, but this study introduces liquid injection as a more efficient and innovative alternative. Simulation results using methanol/water separation indicate that liquid injection reduces both reboiler duty and compression power, achieving up to 50% primary energy savings compared with conventional distillation columns. Unlike continuous heat exchange in conventional HIDiC (C-HIDiC), D-HIDiC simplifies heat integration, avoiding complex hardware and energy penalties. Comparative analysis across multiple configurations, including SuperHIDiC, confirms the potential of D-HIDiC with liquid injection to fully electrify distillation, eliminate steam utility, and significantly support sustainable industrial operations.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"75 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18861","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrification of distillation processes through discretely heat integrated distillation columns (D-HIDiC) is an effective approach to enhance energy efficiency and lower carbon emissions. For separating systems with high temperature lift, multi-stage compression and inter-stage cooling are necessary to link the high-pressure rectifier and low-pressure stripper. Traditionally, heat recovery employs pumparound loops, but this study introduces liquid injection as a more efficient and innovative alternative. Simulation results using methanol/water separation indicate that liquid injection reduces both reboiler duty and compression power, achieving up to 50% primary energy savings compared with conventional distillation columns. Unlike continuous heat exchange in conventional HIDiC (C-HIDiC), D-HIDiC simplifies heat integration, avoiding complex hardware and energy penalties. Comparative analysis across multiple configurations, including SuperHIDiC, confirms the potential of D-HIDiC with liquid injection to fully electrify distillation, eliminate steam utility, and significantly support sustainable industrial operations.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.