Li Chen, Cailong Zhou, Fan Feng, Yuewen Jia, Lichun Dong, Sui Zhang
{"title":"Lewis acid-driven interlayer shifting in sub-nm 2D covalent organic framework membranes for hydrogen purification","authors":"Li Chen, Cailong Zhou, Fan Feng, Yuewen Jia, Lichun Dong, Sui Zhang","doi":"10.1002/aic.18835","DOIUrl":null,"url":null,"abstract":"Covalent organic framework (COF) membranes are promising for eco-friendly separations, but precise control of pore size at the angstrom level has been challenging, limiting their application in gas separation. This study introduces a pore redistribution method to reduce pore size to the sub-nanometer range in single-phase COF membranes. Using a Lewis acid (YbCF<sub>3</sub>(SO<sub>3</sub>)<sub>3</sub>) as the catalyst, interlayer shifting in 2D COFs was observed, which accelerates imine formation and weakens interlayer stacking forces. The pore size was engineered from >1.0 to ~0.6 nm. The optimal membrane achieves a competitive H<sub>2</sub> permeance of 2253 gas permeation units (GPUs) and a high H<sub>2</sub>/CO<sub>2</sub> selectivity of 21.6 in a binary equimolar gas test at room temperature, outperforming other one-phase COF membranes and exceeding the 2008 Robeson upper bound. This approach offers an effective strategy for engineering microporous materials for gas separation and other applications.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"218 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18835","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Covalent organic framework (COF) membranes are promising for eco-friendly separations, but precise control of pore size at the angstrom level has been challenging, limiting their application in gas separation. This study introduces a pore redistribution method to reduce pore size to the sub-nanometer range in single-phase COF membranes. Using a Lewis acid (YbCF3(SO3)3) as the catalyst, interlayer shifting in 2D COFs was observed, which accelerates imine formation and weakens interlayer stacking forces. The pore size was engineered from >1.0 to ~0.6 nm. The optimal membrane achieves a competitive H2 permeance of 2253 gas permeation units (GPUs) and a high H2/CO2 selectivity of 21.6 in a binary equimolar gas test at room temperature, outperforming other one-phase COF membranes and exceeding the 2008 Robeson upper bound. This approach offers an effective strategy for engineering microporous materials for gas separation and other applications.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.