An-Sheng Wang , Jie-Xin Wang , Yuan Le , Dan Wang , Yuan Pu , Xiao-Fei Zeng , Jian-Feng Chen
{"title":"Synthesis of monodispersed inorganic nanoparticles by high gravity technology for multifunctional applications","authors":"An-Sheng Wang , Jie-Xin Wang , Yuan Le , Dan Wang , Yuan Pu , Xiao-Fei Zeng , Jian-Feng Chen","doi":"10.1016/j.coche.2024.101060","DOIUrl":"10.1016/j.coche.2024.101060","url":null,"abstract":"<div><div>Monodispersed nanoparticles are the pivotal in optimizing the performance of nanomaterials and propelling innovation in nanotechnology applications. This paper reviews advancements in the synthesis of monodispersed inorganic nanoparticles, such as metals, metal oxides, and inorganic salts, within liquid systems by high gravity technology. Special focus is given on the critical role of <em>in situ</em> modification in achieving monodispersed and morphologically uniform particles. Leveraging the superior mixing capabilities of high gravity technology and the precise control offered by <em>in situ</em> modification, these nanoparticles demonstrate significant enhancements in their applications within organic systems. Catalytic efficiency is markedly increased, and the properties of composite materials are optimized. This underscores the successful integration of high gravity technology with materials science in propelling the development of practical functional materials. Looking ahead, monodispersed inorganic nanoparticles synthesized and the composites they formed via high gravity technology and <em>in situ</em> modification are poised to usher in a new era in nanotechnology.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"47 ","pages":"Article 101060"},"PeriodicalIF":8.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahnaz Ghasemi , Ali Parastesh , Mohsen Padervand , Haitao Ren , Ximing Li , Abdelkader Labidi , Michela Signoretto , Elmuez A Dawi , Tayebeh Hamzehlouyan , Eric Lichtfouse , Chuanyi Wang
{"title":"Recent progress on Z- and S-scheme photocatalysis: mechanistic understanding toward green applications","authors":"Shahnaz Ghasemi , Ali Parastesh , Mohsen Padervand , Haitao Ren , Ximing Li , Abdelkader Labidi , Michela Signoretto , Elmuez A Dawi , Tayebeh Hamzehlouyan , Eric Lichtfouse , Chuanyi Wang","doi":"10.1016/j.coche.2024.101059","DOIUrl":"10.1016/j.coche.2024.101059","url":null,"abstract":"<div><div>Photocatalysis has been widely used to address the environmental issues and energy crises that threaten the future of planet Earth. One of the main drawbacks to developing photocatalysts for practical applications is the electron–hole recombination concept, which seriously hinders the photoreaction rate. To resolve this, heterojunctions with different patterns, including Z and S schemes, showed great potential to enhance photoactivity and thus attracted increasing attention. Herein, we concisely reviewed recent progress in various types of such systems, focusing on the mechanistic understanding of clean energy and environmental applications. The principles of constructions based on optoelectronic properties and semiconducting behavior are comprehensively discussed. The advantages and disadvantages of each system are also considered to make a logical conclusion and inspirational perspectives.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"47 ","pages":"Article 101059"},"PeriodicalIF":8.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia-Min Lu , Yu-Gan Zhu , Yan-Bin Li , Guang-Wen Chu , Jian-Feng Chen
{"title":"New advance in application research of high-gravity process intensification technology","authors":"Jia-Min Lu , Yu-Gan Zhu , Yan-Bin Li , Guang-Wen Chu , Jian-Feng Chen","doi":"10.1016/j.coche.2024.101057","DOIUrl":"10.1016/j.coche.2024.101057","url":null,"abstract":"<div><div>Process intensification (PI) has generated considerable interest as a potential avenue for sustainable and green development within the chemical industry. High gravity (HiGee) technology is regarded as a significant breakthrough in PI, as it has possessed the potential to increase the mass transfer rate by ∼1–3 orders of magnitude in comparison to conventional equipment. Rotating packed bed (RPB), as a classical HiGee apparatus, has been proven to have great advantages for application in various chemical engineering fields, for it can provide large contact area between phases, faster surface renewal rate and more homogeneous nucleation sites, and so on. As research on HiGee technology has become more advanced, it is necessary to collate the various studies on the application of HiGee technology in different fields systematically. This work mainly reviews the research progresses of HiGee technology in synthesis of chemicals, preparation of particles, and separation in recent 5 years. Specifically, the latest applications of HiGee technology under different demands and novel structures of RPB designed for various working conditions are presented. Finally, the opportunities and further research directions of the HiGee technology are proposed.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"47 ","pages":"Article 101057"},"PeriodicalIF":8.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distillation in high gravity chemical engineering","authors":"Guangquan Wang, Jianbing Ji","doi":"10.1016/j.coche.2024.101058","DOIUrl":"10.1016/j.coche.2024.101058","url":null,"abstract":"<div><div>Distillation is the most widely used separation process in industry, typically carried out in large, tall columns that dominate the skylines of chemical facilities. High gravity technology (Higee) aims to enhance mass transfer through the application of high centrifugal forces, presenting a promising approach to significantly reduce the size of distillation columns. However, Higee has not yet been fully integrated into distillation processes. A key reason for this limited application is that Higee devices need to be customized to meet the specific requirements of distillation. This article introduces a generally preferred Higee structure designed for this purpose, taking into account several critical considerations, including liquid distribution, dynamic sealing, intermediate feeding, and multirotor configurations. Most importantly, to tackle the longstanding issue of variable flow cross-sections in traditional Higee devices, an innovative rotor design with constant vapor flow area was proposed. This rotor, combined with the advantageous features of the favorable Higee structure, will open up new opportunities for the application of Higee technology in distillation processes.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"47 ","pages":"Article 101058"},"PeriodicalIF":8.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gas–liquid and liquid–liquid vortex technology for process intensification","authors":"Afroditi Kourou, Siyuan Chen, Yi Ouyang","doi":"10.1016/j.coche.2024.101056","DOIUrl":"10.1016/j.coche.2024.101056","url":null,"abstract":"<div><div>The quest for efficient, sustainable chemical processes drives the advancement of process intensification methods. This study evaluates vortex technology, which utilizes controlled, confined swirling flows to enhance mixing and mass and heat transfer, improving process efficiency. Its potential is assessed by examining its principles, design and optimization parameters, current and prospective applications, and challenges in scaling up and commercialization. It is particularly suited when enhanced efficiency in mixing, transport performance, and cavitation is required, especially in systems involving fast reactions, short residence times, and space constraints. Furthermore, it shows promise in developing compact and efficient contacting devices with reduced energy consumption.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"46 ","pages":"Article 101056"},"PeriodicalIF":8.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayesha Javaid , Muhammad Imran , Manoj P Rayaroth , Xun Sun , Chongqing Wang , Grzegorz Boczkaj , Malwina Momotko
{"title":"Graphitic carbon nitride/bismuth-based Z-scheme heterojunctions for the photocatalytic removal of pharmaceuticals and personal care products — a review","authors":"Ayesha Javaid , Muhammad Imran , Manoj P Rayaroth , Xun Sun , Chongqing Wang , Grzegorz Boczkaj , Malwina Momotko","doi":"10.1016/j.coche.2024.101054","DOIUrl":"10.1016/j.coche.2024.101054","url":null,"abstract":"<div><div>Z-scheme heterojunction in recent years is one of the most promising approaches in photocatalytic materials in solar light region for various environmental applications, including the removal of pharmaceuticals and personal care products (PPCPs). Integrating g-C<sub>3</sub>N<sub>4</sub> and Bi-based semiconductors via Z-scheme is highly effective in providing efficient flow of charge carriers along with suitable redox sites. The g-C<sub>3</sub>N<sub>4</sub>/Bi-based photocatalysts were synthesized by hydrothermal, co-precipitation, co-calcination, solvothermal polycondensation, or ion exchange/photoreduction. Environmental pollutants, such as tetracycline, ofloxacin, ciprofloxacin, levofloxacin, cefixime, and carbamazepine, were degraded with efficiency exceeding 90%. The major reactive species identified in those Z-schemes were superoxide radicals, hydroxyl radicals, and electron-holes pair. Best processes revealed economically feasible with 700–800 kWh/m<sup>3</sup> of electric energy per order (EEO). For solar light–driven processes, energy can be named as ‘free’ (sunlight), but EEO allows to compare new developments. In future studies, process economic aspect, effectiveness in case of real effluents, including high-salinity conditions and evaluation of photocatalysts stability, and metals leaching should be addressed.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"46 ","pages":"Article 101054"},"PeriodicalIF":8.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasser Vasseghian , Sang-Woo Joo , Jaebum Choo , Michael Badawi , Tejraj M Aminabhavi
{"title":"Photocatalytic materials for solar-driven hydrogen generation","authors":"Yasser Vasseghian , Sang-Woo Joo , Jaebum Choo , Michael Badawi , Tejraj M Aminabhavi","doi":"10.1016/j.coche.2024.101055","DOIUrl":"10.1016/j.coche.2024.101055","url":null,"abstract":"<div><div>A critical review is presented on the analysis of photocatalytic materials in hydrogen generation from solar energy covering the literature of the past 5 years. The materials covered include semiconductor metal oxides, perovskites, metal chalcogenides, metal-organic frameworks, graphitic carbon nitride, and plasmonic materials. The results are analyzed critically and reviewed with regard to their future trends in photocatalytic hydrogen generation from solar energy to identify promising new areas to stimulate research in this area.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"46 ","pages":"Article 101055"},"PeriodicalIF":8.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrode engineering strategies to advance polymer electrolyte fuel cells — recent progress and opportunities","authors":"Rens J Horst , Antoni Forner-Cuenca","doi":"10.1016/j.coche.2024.101053","DOIUrl":"10.1016/j.coche.2024.101053","url":null,"abstract":"<div><div>Porous electrodes — typically referred to as <em>catalyst layers</em> — are critical components in polymer electrolyte fuel cells and several electrochemical technologies, where they determine the performance, durability, and cost of the system. The electrodes are responsible for sustaining electrochemical reactions, delivering reactants and removing products, and providing electronic and ionic transport. Simultaneously providing these functions necessitates sophisticated control over material properties across multiple length scales, making electrode design an important field of research. Here, we review recent trends in electrode engineering with a focus on optimizing complex mass transport phenomena to advance polymer electrolyte fuel cells. We first describe approaches to produce hierarchically organized electrode structures. Then, we discuss methods to control the support morphology, followed by strategies to functionalize the support chemical composition. We then highlight emerging trends in ionomer engineering and conclude with recommendations for standardized testing and the need to assess the end-of-life performance of novel electrode structures.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"46 ","pages":"Article 101053"},"PeriodicalIF":8.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intensified reactors for a paradigm shift in chemical processing: the case for spinning disc reactors","authors":"Arnab Chaudhuri, John van der Schaaf","doi":"10.1016/j.coche.2024.101052","DOIUrl":"10.1016/j.coche.2024.101052","url":null,"abstract":"<div><div>To transition from the current linear method of chemical manufacturing to a more sustainable and circular approach, a paradigm shift in processing methods is essential. In this perspective article, we explore the potential role of the spinning disc reactor (SDR) in shaping a future industry that relies on modular and distributed production methods. Three key areas are highlighted in particular: utilizing the reactor to intensify thermochemical reactions, the application of the SDR for separation processes, and the integration of alternative activation sources. In addition to reviewing recent advances in the field, we also provide a perspective on the ongoing as well as potential future research and development projects, which may help propel the SDR into a widely adopted industrial unit.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"46 ","pages":"Article 101052"},"PeriodicalIF":8.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jayanti Das , Adam C Fisher , Lisa Hughey , Thomas F O’Connor , Vidya Pai , Cinque Soto , John Wan
{"title":"Considerations for Big Data management in pharmaceutical manufacturing","authors":"Jayanti Das , Adam C Fisher , Lisa Hughey , Thomas F O’Connor , Vidya Pai , Cinque Soto , John Wan","doi":"10.1016/j.coche.2024.101051","DOIUrl":"10.1016/j.coche.2024.101051","url":null,"abstract":"<div><div>Big Data technologies are advancing the manufacturing of drug and biological products. Such technologies include innovative software and computational methods for data storage, mining, and analytics. Increasingly vast, complex data sets are being produced by advanced manufacturing processes and sensors for statistical analysis and decision-making. Implementing Big Data technologies, however, can introduce new challenges for organizations in areas of data generation, architecture, and security. Big Data management includes implementing robust storage, complex data integration, and state-of-the-art analysis software. Upholding data integrity and security might require designing a modernized risk-based framework plan for the organization. Once these challenges are successfully addressed, the incorporation of Big Data technologies into pharmaceutical manufacturing is expected to enable more efficient production, lower costs, and greater quality control, resulting in a stronger global pharmaceutical supply chain.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"46 ","pages":"Article 101051"},"PeriodicalIF":8.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}